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ABSTRACT

This technical report contains the details of an acoustic modeling
approach based on subspace adaptation of a shared Gaussian Mix-
ture Model. This refers to adaptation to a particular speechstate;
it is not a speaker adaptation technique, although we do later in-
troduce a speaker adaptation technique that it tied to this particular
framework. Our model is a large shared GMM whose parameters
vary in a subspace of relatively low dimension (e.g. 50), thus each
state is described by a vector of low dimension which controls the
GMM’s means and mixture weights in a manner determined by glob-
ally shared parameters. In addition we generalize to havingeach
speech state be a mixture of substates, each with a differentvec-
tor. Only the mathematical details are provided here; experimental
results are being published separately.

Index Terms— Speech Recognition, Universal Background
Model, Factor Analysis

1. INTRODUCTION

We have previously [1] applied the Universal Background Model
(UBM) to speech recognition. In that paper, a shared mixtureof di-
agonal Gaussians was adapted via a tree-based form of MAP (Max-
imum a Posteriori) estimation, to each speech state. We demon-
strated substantial improvements in an ML trained system (i.e. with-
out discriminative training). However, due to the very large number
of parameters in the UBM based system we anticipated difficulties
training those models discriminatively. Therefore, in this paper we
introduce a very different UBM based approach that has fewerpa-
rameters, and we show that it can be discriminatively trained and
still provide a performance improvement under ML training similar
to our previous UBM based approach. What we are introducing here
is a subspace approach, in which a vector of low dimension (e.g.
50) controls all the mean and weight parameters of the speech-state-
specific mixture model. We also generalize to have a mixture of
substates in each state, i.e. each state’s distribution is controlled by
a number of these 50-dimensional vectors each with its own mixture
weight. In addition we introduce a “speaker vector,” which intro-
duces an offset to the means (or equivalently, features) that is depen-
dent on the speaker, and exists in a different subspace of themodel.

We note that the difference between the work we describe here
and our previous work [1] mirrors a difference that exists within
the speaker recognition community, where a Maximum A Posteri-
ori (MAP) based approach [2] coexists with an approach similar to
our subspace approach that goes by the name factor analysis [3]. The
reason for the name is that in that case there is an additionalsubspace
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that models the session variability, and therefore the adapted model
varies due to both speaker and session specific factors. In our case
we also introduce a method that uses two factors; the factor or inter-
est is the speech-state factor, and the factor to be normalized out is
the (speaker plus session) factor.

Section 2 introduces the model we are using. Section 3.2 ex-
plains the methods we use to quickly evaluate likelihoods given this
model. Section 4 explains the training procedure. Section 5gener-
alizes the training procedure to the case where speaker factors are
used. Section 6 discusses adaptation in this context. Section 7 ex-
plains the techniques used for discriminative training.

Note that this document has not been very thoroughly checked
and may contain errors. A different document is being prepared
which will be clearer and more thoroughly checked, with more
derivations.

2. SUBSPACE MIXTURE MODEL

2.1. Basic model

In this section we describe the Subspace Mixture Model. First we
describe the basic model without substates. We use the index1 ≤
i ≤ I to represent the Gaussians in the UBM (e.g.I = 750 Gaus-
sians), and the index1 ≤ j ≤ J to represent the clustered phonetic
states (e.g.J = 8000 for a typical large vocabulary system). Let the
feature dimension be1 ≤ d ≤ D, e.g.D = 40, and let the subspace
dimension be1 ≤ s ≤ S, e.g. S = 50. The subspace dimension
can take any value; it represents the number of different directions
in which we allow the phonetic states to differ from each other.

For each statej, the probability modelp(x|j) is:

p(x|j) =
I
X

i=1

wjiN (x; µji,Σi) (1)

µji = Miv
+
j (2)

wji =
expwT

i v+
j

PI

i′=1 expwi′
T v+

j

(3)

Thus, each state has a shared number of mixtures (e.g.,I = 750).
The means vary linearly with the state-specific vectorvj (we denote
byv+

j the same vector, extended with a 1, to handle constant offsets).
The log weights prior to normalization also vary linearly with vj .
The parameters of the system are the mean-projection matricesMi,
the weight-projection vectorswi, the variancesΣi, and the state-
specific vectorsvj . To give the reader a feel for the number of pa-
rameters involved, for the values ofI, J, D andS mentioned above
the total number of parameters would be, in reverse order of size:



mean-projections,IDS = 750×40× (50+1) = 1.53×106; vari-
ances,1

2
ID(D+1) = 750×40×41

2
= 0.615×106 ; state-specific vec-

tors,JD = 0.4× 106, weight-projections,IS = 750× (50 + 1) =
38.25×103. Thus the total number of parameters is2.58×106, and
most of the parameters are shared, not state-specific. For reference, a
typical mixture-of-Gaussians system might have 100000 Gaussians
in total, each with a 40-dimensional mean and variance, which gives
us 8 × 106 parameters total, more than twice this subspace GMM
system. Note that the quantity of state-specific parametersin the
subspace GMM system is less than one tenth of that in the normal
GMM system. For this reason, we extend the model to include mix-
tures of substates.

2.2. Subspace mixture model with substates

The subspace mixture model with substates is the same as in Equa-
tions 1 to 3 except each state is now like a mixture of states; each
statej has substates1 ≤ m ≤ Mj with associated vectorsvjm and

mixture weightscjm with
PMj

m=1 cjm = 1; we can write out the
model as:

p(x|j) =

Mj
X

m=1

cjm

I
X

i=1

wjmiN (x; µjmi,Σi) (4)

µjmi = Miv
+
jm (5)

wjmi =
expwT

i v+
jm

PI

i′=1 expwT
i′
v+

jm

, (6)

It is useful to think about the substates as corresponding toGaussians
in a mixture of Gaussians, and in fact as we describe later, weuse a
similar mixing up procedure to increase the number of states. This
model is in effect a mixture of mixtures of Gaussians, with the total
number of Gaussians in each state being equal toI Jm. Clearly this
large size could lead to efficiency problems. In fact, computing each
mean would involve a matrix multiply taking timeO(SD), and since
the variancesΣi are not diagonal the actual likelihood computation
would beO(D2). In the next section we show that despite this,
likelhoods given this model can be computed in a time similarto a
normal diagonal mixture of Gaussians.

2.3. Subspace mixture model with speaker vectors

Another useful extension to the basic subspace GMM framework is a
technique that introduces speaker vectors, where each speakers will
described by a speaker vectorvs of dimensionT (in experiments
here we useT = 50, the same as the subspace dimensionS). The
speaker subspace of dimensionT is analogous to the previously in-
troduced speech-state subspace of dimensionS. The projected mean
now becomes:

µ
(s)
jmi = Miv

+
jm + Nivs, (7)

soNivs becomes a speaker-specific offset to the mean. We do not
make the mixture weights dependent on the speaker factor: this is for
efficiency reasons, as it enables the speaker adaptation to be imple-
mented as a feature-space offset (for each Gaussian indexi). The use
of separate subspaces for the speech state and the speaker isanalo-
gous to the “factor analysis” approach used in speaker identifica-
tion [3] of having separate subspaces for the speaker and thechan-
nel. Because the number of parameters to be estimated per speaker
is so small, in practice we actually estimate these vectors for each
utterance.

3. FAST EVALUATION OF SUBSPACE MODELS

3.1. Pruning using the UBM

The Universal Background Model (UBM) is a global mixture of
Gaussians that is used to initialize the subspace mixture model;
think of it as an “unadapted” version of the mixture model. Let the
UBM have means̄µi and (full) variances̄Σi. We use equal mixture
weights. Note that the variances̄Σi are different from the shared
variancesΣi in the model. We can think of̄Σi as a “total variance”
and Σi as a “within-class” variance; a similar distinction exists
where UBMs are used for speaker identification, e.g., see [3]. We
prune using the UBM on each frame as follows. First we evaluate
all of the UBM Gaussians using only the diagonal of the variance.
Then we take e.g. 20 of the most likely Gaussians and evaluatethe
likelihood using the full covariance matrix. Of these we take, say the
topP = 5 most likely Gaussians and only perform the summations
over i, using the topP indices. This is done during both training
and test, and we found that it is best to train and test using the same
value ofP .

3.2. Fast computation of Gaussian likelihoods

The other issue we have, apart from the very large number of Gaus-
sians, is the fact that the naive Gaussian liklelihood computation
without caching Gaussian means (which is impossible due to mem-
ory constraints), would take timeO(D2 + SD) for each Gaussian.
We show below that we can reduce this toO(S) by doing appro-
priate precomputations on each frame. Note that typicallyS and
D are similar so this is about twice as fast as evaluating a diagonal
Gaussian likelihood which isO(2D). However we are still evalu-
ating more Gaussians in each state in our subspace system than in
our baseline: the number isPMj , rather thanMj in a mixture-of-
Gaussians system, and the subspace system might have about half
theMj of our baseline, so the number of floating point operations is
about1

2
P times our baseline. We find that the total compute time for

decoding using subspace models is about two or three times slower
than a standard system, given our current setup (the difference might
be less if we were not using Gaussian clustering to compute only a
subset of Gaussians in each state in our baseline system).

Using p(x; j, m, i) to denote the contribution to the likelihood
of x given statej from UBM indexi and mixture indexm, we have:

p(x; j, m, i) = cjmwjmi exp −0.5 (log |detΣi| + D log(2π)

+(µjmi − x)T Σ−1
i (µjmi − x)

´

.(8)

We can decompose this into a mixture-specific normalizernjmi, a
feature and UBM index-specific normalizerni(x) and a cross term:

log p(x; j, m, i) = njmi + ni(x) + x
T
Σ

−1
i µjmi

= njmi + ni(x) + x
T
Σ

−1
i Miv

+
jm

= njmi + ni(x) + (MT
i Σ

−1
i x)T

v
+
jm (9)

njmi = log cjm + log wjmi − 0.5(log |detΣi|
+D log(2π) + µT

jmiΣ
−1
i µjmi) (10)

ni(x) = −0.5xT
Σ

−1
i x (11)

(12)

Thus, the precomputation we must do on every frame involves com-
puting the normalizersni(x) and the vectorsMT

i Σ−1
i x, which can

be done in timePD2 andPSD respectively, which is acceptable.
The main cost of this approach is the need to store in memory the



normalizersnjmi, which will typically be several times the size of
the actual parameters of the model, e.g. for our example system if
it had 30000 total mixtures and using floats, it would take 90 MB to
store, versus 15.5 MB for the model.

If we are using speaker vectors, this form of adaptation can be
implemented efficiently in the above scheme by replacing allin-
stances ofx in Equations 9 to 11 with(x − Niv

+
s ).

4. SUBSPACE MODEL TRAINING

The subspace model training proceeds as follows. Firstly weinitial-
ize the UBM, which is a mixture of full-covariance Gaussiansthat
models all speech data regardless of speech state or speaker. Next,
we do a first pass of accumulation and update, using a previoussys-
tem to align speech states to frames. In this first pass of accumulation
and update, we are essentially estimating the basic subspace mixture
model of Section 2.1, without substates or speaker vectors.In later
passes over the data, we accumulate different kinds of statistics and
the update equations have a different form.

4.1. UBM initialization

The method we use for initialization of the UBM parametersµ̄i and
Σ̄i may not be optimal as we have not experimented with this. We
take an already-trained conventional diagonal Gaussian system and
cluster the Gaussians intoI clusters (e.g. 750). This is done by
considering all the Gaussians as one large mixture model (using as
weights the weights within each state, divided by the total number
of states), and then computing the mixture ofI Gaussians that max-
imizes the auxiliary function likelihood. The algorithm weuse to
compute this is like a form of k-means except with pruning to avoid
excessive compute (this involves a notion of neighboring clusters),
starting from a random assignment to clusters. The variances are
thus initialized to diagonal. From that point we do 3 iterations of E-
M over a subset (e.g. 1/10) of the training data, updating themeans
and (full) variances but leaving the mixture weights uniform to en-
courage even distribution of data.

4.2. First pass of training: accumulation

The first pass of training involves getting mean statistics for each
statej and UBM indexi, and using this to initialize the param-
eters with a single vector per state. By storing statistics in a dif-
ferent form for the first iteration of update than for later iterations,
we can avoid making unnecessary passes over the data. However,
to store the mean statistics requires a lot of memory and storage:
e.g. for our example system using floats, it would take4IJD =
4 × 750 × 8000 × 40 bytes of memory, or 0.96 GB. To reduce this,
we avoid storing statistics with very small counts, as we describe
below. Our state posteriorsγj(t) are zero-one posteriors based on
Viterbi alignments obtained using a baseline (mixture-of-Gaussians)
system. On each frame we also compute UBM Gaussian posteri-
ors γi(t) (with pruning to the top 5 as described above). We then
compute initial posteriors:

γji(t) = γj(t)γi(t). (13)

The statistics we accumulate are count statistics (sums of the poste-
riors) and state-specific mean statistics, and also a scatter for each
UBM Gaussian index which we will use to compute within-classco-
variancesΣi. There is a slight complication in that we want to avoid
accumulating mean statistics where the count is very small.There-
fore we define the “pruned” count̃γji(t) to be zero if the sum of

γji(t) up to the current point in the current parallel job is less than
a thresholdτ (we have usedτ values from 0.1 to 2 depending on
system size). The statistics we accumulate are namedm̃ji for the
first order statistics and̃Si for the scatter to emphasize that they are
accumulated using the pruned counts. So we have:

γji =
T
X

t=1

γji(t) (14)

γ̃ji =

T
X

t=1

γ̃ji(t) (15)

m̃ji =
T
X

t=1

γ̃ji(t)x(t) (16)

S̃i =

T
X

t=1

J
X

j=1

γ̃ji(t)x(t)x(t)T (17)

4.3. First pass of training: update

The first pass of update is an iterative one in which we first initialize
the vectors to random values (e.g. Gaussian noise), initialize the
projections to zero and the variances to the UBM variances, then
iteratively optimize in turn each of the four types of parameters: the
weight-projection vectorswi, the mean-projection matricesMi, the
variancesΣi and the state-specific vectorsvj (at this point we have
no substates). This is done for about ten iterations.

4.3.1. Weight-projection vector update

The update of the weight-projection vectorswi is based on maxi-
mizing the auxiliary function:

Q(. . .) =
X

i

X

j

γji log wji (18)

=
X

i,j

γji

 

w
T
i v

+
j − log

I
X

i′=1

expwi′
T
v

+
j

!

(19)

We can use the inequality1 − (x/x̄) ≤ − log(x/x̄) (which is an
equality atx = x̄), to maximize instead the following auxiliary func-
tion, wherew̄i is the pre-update value ofwi:

Q′(. . .) =
X

i

X

j

γji

 

w
T
i v

+
j −

PI

i′=1 expwi′
T v+

j
PI

i′=1 exp w̄T
i′
v+

j

!

. (20)

To maximize the above we use a second order approximation to the
exponential function, but then in certain cases we take a heuristic
overestimate of the negated second gradient, for safety; this leads
to themax(·) function below (without this heuristic we would just
have its first term). The update procedure is as follows. First we
compute all the un-normalized log weights, let us call themxji =
wT

i v+
j , and the normalizersxj = log

P

i expxji; these are used to
compute the weightswji = exp(xji − xj) during the computation.
We also compute the total counts per stateγj =

P

i
γji. Then for

each UBM Gaussian indexi we compute the first order termgi and
negated second order termHi in a quadratic approximation to the
auxiliary function inwi − w̄i, i.e. around the current point. These



are computed as:

gi =
X

j

(γji − γjwji)v
+
j (21)

Hi =
X

j

max(γjwji, γji)v
+
j v

+
j

T
(22)

wi := wi + H
−1
i gi (23)

After updating eachwi, we update the affectedxji and thexj before
updating the nexti so we can continue with up to date values of
wji. The value of the auxiliary function should be checked as we
cannot prove that this procedure will converge, although wehave
never observed it not converging. In case of nonconvergencewe can
continue with a slowed-down version of Equation 23.

4.3.2. Mean-projection matrix update

The update for the mean-projection matricesMi (which have size
D × S + 1) is as follows. For a particulari, we first make a co-
ordinate change so that the varianceΣi is unit. We use the transform
T = Σ−0.5

i , and project to getM′

i = TMi in the new co-ordinates.
Then the computation is as follows: for each of itsD rowsm′

id we
will compute a linear termgid of the auxiliary function as a function
of the change in that row, and a negated quadratic termHi which is
shared for alld.

gid =
X

j

`

Tim̃ji − γ̃jiM
′

iv
+
j

´

d
v

+
j (24)

Hi =
X

j

γ̃jiv
+
j v

+
j

T
(25)

m
′

id := m
′

id + H
−1
i gd. (26)

The auxiliary function improvement is0.5gT
d H−1

i gd. We project
back to getMi := T−1

i M′

i.

4.3.3. Variance updates

The update for the variancesΣi is very simple:

Σi :=
S̃i +

PJ

j=1 −m̃jiµ
T
ji − µjim̃

T
ji + γ̃jiµjiµ

T
ji

PJ

j=1 γ̃ji

, (27)

whereµji = (Miv
+
j ). If we useΣ̂i to represent the post-update

variance andΣi is the pre-update variance, the auxiliary function

improvement is given by−0.5
“

PJ

j=1 γ̃ji

”“

log |det Σ̂i| − log |detΣi|
+tr((Σ̂−1

i − Σ−1
i )Σ̂i)

”

. We recommend inspecting all auxiliary

function improvements for diagonstic purposes and to checkfor
convergence.

4.3.4. Vector updates

The update for the state-specific vectorsvj involves incorporating
a quadratic auxiliary function for the means, and our previously
described quadratic approximation to the auxiliary function for the
weights. Again we accumulate a linear termgj and a negated
quadratic termHj which describe how the auxiliary function varies
with a change in vj . In the expressions below, the top line in each
expression refers to the weights and the bottom line to the means.

We use the notationx− to mean the vectorx without its last ele-
ment; for matrices the notationM− means removing the last row
and column.

gj =
I
X

i=1

(γji − γjwji)w
−

i

+
I
X

i=1

“

M
T
i Σ

−1
i (m̃ji − γ̃jiMiv

+
j )
”

−

(28)

Hj =
X

i=1

max(γji, γjwji)w
−

i w
−

i

T

+
I
X

i=1

γji

“

M
T
i Σ

−1
i Mi

”

−

(29)

vj := vj + H
−1
j gj (30)

The matrices only dependent oni in the last line of Equation 29
should be precomputed.

4.4. Later iterations of training: accumulation

The method of accumulation differs in later iterations of training,
versus the first iteration. We store statistics in a more memory effi-
cient way, without pruning. This enables a more exact optimization,
and also allows us to have more mixtures without increasing the size
of the statistics too much. The size of the statistics are dominated by
the need to store data counts for eachi, j andm. For these later it-
erations we assume that we already have a “substate” model; we ini-
tialize this by having a single substate per state as estimated above,
and using unit weight. The state posteriors are, as before, zero-one
posteriors based on Viterbi alignment using a previous system.

4.4.1. Discretized posteriors

The within-state posteriorsγjmi(t) are computed by evaluating the
likelihoods as described in Section 3.2. However, we also randomly
discretize the posteriors into steps of typicallyδ = 0.05. This re-
duces compute time by getting rid of most very small posteriors, and
also allows us to compress the posteriors in memory and on disk in
a variable length coding scheme in which countsγjmi typically take
only one byte to store. The discretized posteriorsγ̃jmi(t) consist of
the part ofγjmi(t) that can be expressed in whole increments ofδ,
plus with probability equal to the remaining part divided byδ, one
extra increment ofδ. The random element of the discretization pro-
cess is necessary to preserve expectations. All statisticsare stored
using the discretized posteriors.

4.4.2. Statistics

The weight statistics are straightforward:

γjmi =
T
X

t=1

γ̃jmi(t) (31)

The statistics we store in order to update the vectorsvjm are the first
order term in the quadratic auxiliary function written in terms of the
vjm directly (i.e. not in terms of offsets from the current value).
Again,x− is x without its last dimension. So we have:

xjm =
T
X

t=1

I
X

i=1

γ̃jmi(t)
“

M
T
i Σ

−1
i x(t)

”

−

(32)



The statistics we store in order to update the mean projection matri-
cesMi are of a similar nature:

Xi =
T
X

t=1

J
X

j=1

Mj
X

m=1

γ̃jmi(t)
`

Σ
−1
i x(t)

´

v
+
jm

T
(33)

The statistics we store in order to update the variances are simply the
variance of the data around the current model means, for eachUBM
Gaussian index:

Si =
X

t,j,m

γ̃jmi(t)(x(t)− Miv
+
jm)(x(t) − Miv

+
jm)T (34)

4.5. Later iterations of training: update

The update for later iterations of training is somewhat harder to jus-
tify than the update for the first iteration. The reason is that there are
updates which we do at the same time (for the variance, the vectors
and the mean projections) which cannot easily be proved to converge
unless they are done on separate iterations. However, we areconfi-
dent that these parameter types are sufficiently orthogonalthat this is
not a problem, and in practice we find that our approach converges.
Note that when any the updates below refer to other types of pa-
rameters (e.g. if the update forMi refers tovjm), this means the
pre-update versions of those parameters. This is importantbecause
the stored statistics are a function of the other parameters, and using
the newly updated versions can lead to inconsistency.

4.5.1. Weight-projection vector update

The update for the weight projection vectors is the same as that de-
scribed in Section 4.3.1, except that we have to replace any sums
over j with sums over bothj andm. We do the update for up to
4 iterations given the stored statistics, or until the auxiliary function
improvement per frame is small (e.g. less than 0.0001).

4.5.2. Mean-projection matrix update

The update for the mean-projection matrix is similar to thatgiven in
Section 4.3.2 except we formulate the quadratic auxiliary function in
terms of the transformed matrix rowm′

id rather than the offset from
its current value. Again we use the data transformTi = Σ−0.5

i to
make the variances unit, soM′

i = TiMi.

gid = transposed d′th row of TiXi (35)

Hi =
X

j

γ̃jmiv
+
jmv

+
jm

T
(36)

m̂′
id = H

−1
i gid. (37)

The auxiliary function improvement fori, d is given bygT
id(m̂′

id −
m′

id) − 0.5
`

m̂idHim̂id − mT
idHimid

´

, wheremid are the pre-

update rows. Again, we project back to getM̂i := T−1
i M̂′

i.

4.5.3. Vector update

In the vector update as follows, we split the second gradientHj into
two parts that relate to the weights and the means respectively, and
use the second oneH(2)

j in our computation of the gradient to con-
vert from a formulation in terms of the vectorvjm, to the change in

the vector. We make use of the summed countsγjm =
PI

i=1 γjmi.
The update is:

H
(1)
jm =

X

i=1

max(γjmi, γjmwjmi)w
−

i w
−

i

T
(38)

H
(2)
jm =

I
X

i=1

γjmi

“

M
T
i Σ

−1
i Mi

”

(39)

gjm =
I
X

i=1

(γjmi − γjmwjmi)w
−

i

+xjm −
“

H
(2)
jmv

+
jm

”

−

(40)

Hjm = H
(1)
jm + H

(2)
jm

−

(41)

v̂jm := vjm + H
−1
jmgjm. (42)

Again we precompute the quantityMT
i Σ−1

i Mi. The auxiliary func-
tion improvement is given by0.5gT

jmH−1
jmgjm.

4.5.4. Variance update

The variance update is trivial:

Σ̂i =
Si

P

j,m
γjmi

. (43)

The auxiliary function improvement can be computed as described
in Section 4.3.3.

4.5.5. Substate weight

We now have a new parameter to estimate: the weight of substates.
This is given by:

cjm =

P

i
γjmi

P

i,m
γjmi

(44)

4.5.6. Mixing up

Here we describe how we increase the number of substates. Theini-
tial model has one substate per state. We have a target total number
of mixtures per state, e.g.M = 50, 000 and we allocate mixture
components to states based on a power rule with a default expo-
nent of 0.2. Thus, if a state has total countγj =

P

m,i
γjmi, the

target number of mixture componentsTj is the closest integer to

M
γ0.2

j
P

j γ0.2
j

. We do mixing up on a subset of iterations (currently

{2,4,6,8,10,12}). On each iteration and for each statej, the number
of mixture components to split shall be the difference between the
targetTj and the current number of mixture componentsMj ; but
no more than the currentMj . If it is less than that, we split those
with the largest counts. In addition, we enforce a minimum count
for mixtures to be split, which is 200 by default. For each substate
vectorvjm that is selected to be split, we compute the negated sec-
ond gradientHjm as used in section 4.5.3, and then compute the

scaleS =
“

Hjm

γjm

”

−0.5

, which provides a scale to the vector (think

of S like a standard deviation). We then compute a random vector
r whose elements are drawn from zero-mean Gaussian distribution
with variance 0.1, and our perturbed vectors shall bevjm ± Sr. We
assign half of the old mixture weight to each of the two new mixture
components. Mixing up is done after all other phases of update are
complete (i.e., starting from the already updated vectors).



4.5.7. Updating the UBM

The UBM parameters̄µi and Σ̄i which are used for pruning are
also updated in our training setup. This is done by accumulating
zeroth, first and second order statistics for eachi and doing the nor-
mal Gaussian update. The posteriors used are the sum over substate
j, m of the posteriorsγjmi(t). Because of the discrete nature of the
pruning operation it is not easy to say very much theoretically about
how these parameters should be trained, in fact it might seemsafer
to leave them fixed. Experiments have failed to show any difference
between training and not training these parameters.

5. SPEAKER FACTORS

We introduced in section 2.3 the notion of speaker vectors, which
capture the main variation between speakers. During training we
need to compute the projectionsNi which project from the speaker
subspace e.g.T = 50, to the feature dimension e.g.D = 40.
There are various issues involved here: initializing the projections
Ni, computing speaker vectorsvs for each training speaker, and
updating the projections on each iteration. Note that although we
use the term “speaker”, in fact we compute the speaker vectors vs

for each utterance.

5.1. Initializing the projections

During the first iteration of accumulation and update, as described
in Sections 4.2 and 4.3, there is no notion of speaker factors. At the
end of the first pass of update, we initialize the speaker projections
Ni to beD by T matrix with ones on the diagonal; if our target
speaker subspace dimensionT is greater thanD then we initially
limit it to be the same asD. On subsequent iterations, after updating
the projectionsNi we can if needed increase the dimensionT in
increments ofD of less by appending columns from the unit matrix,
e.g. [1, 0, . . .]T , [0, 1, 0, . . .]T , etc.

5.2. Computing the speaker vectors

We compute the speaker vectors during training where they are com-
puted on the fly, on all iterations except the first, and also during
test time. The computation of the speaker vectorvs for a particular
speaker (or, in practice, a particular utterance) is done asfollows.
The statistics consist of the linear termgs in the objective function
in terms of the change invs, plus the countγis per Gaussian in
the UBM (so the statistics per speaker are very small, of dimension
T + I). The statistics and the update are as follows, where the sum
over time is understood to only cover the speaker or utterance in
question. Note that the following is an iterative update where we
always start fromvs = 0; one or two iterations suffice to get a good
estimate.

γis =
X

t,j,m

γjmi(t) (45)

gs =
X

t,i,j,m

γjmi(t)
“

N T
i Σ−1

i (x(t) − Nivs − µjmi)
”

−

(46)

Hs :=
X

i

γis

“

N T
i Σ−1

i Ni

”

−

(47)

vs := vs + gsH
−1
s , (48)

whereγis =
P

t,j,m
γjmi(t) is the total count for speakers and

Gaussian indexi. Wherevs appears above, this is the pre-update

value of vs which on the first iteration would be zero; we see a
small improvement from doing two iterations of the update (using
the same word sequence but different posteriors). The matrix term
in parentheses in Equation 47 should be precomputed and reused for
all speakers.

5.3. Updating the speaker projections

The speaker projection matricesNi are updated as follows. The ac-
cumulation phase takes place alongside the other forms of accumu-
lation described in Section 4.4.2. We accumulateYi, which is the
linear term in the auxiliary function in terms of a change inNi, and
Qi, which is the weighted outer product of the speaker vectors.s(t)
is the speaker active at timet (e.g. we could imagine thatt = 1 . . . T
somehow spans all speakers and utterances):

Yi =
X

t,i,j,m

γjmi(t)
`

Σ−1
i (xt − µjmi − Nivs(t))

´

v
T
s(t)(49)

Qi =
X

t

vs(t)v
T
s(t) (50)

For the update we again use a transformT that makes the within-
class varianceΣi unit, do the update in this space and convert back:

Ti = Σ−0.5
i (51)

Ỹi = T
−1
i Yi (52)

δÑi = ỸiQ
−1
i (53)

δNi = T
−1
i δÑi (54)

Ni := Ni + δNi (55)

or : Ni := Ni + ΣiYiQ
−1
i (56)

The predicted criterion improvement is0.5tr
`

YT
i ΣiYiQ

−1
i

´

.

5.4. Effect of speaker vectors on other accumulators

If we are training with speaker vectors, the other accumulated quan-
tities need to be changed to reflect this. It is most convenient in this
case to negate the termNivs and view it as an offset on the fea-
tures (specific to the UBM Gaussian indexi). Therefore, we replace
any instance ofx(t) in Equations 32 to 34 with

`

x(t) −Nivs(t)

´

,
wheres(t) is the speaker active on timet.

5.5. Stabilizing the update with speaker vectors

In our training we update all parameters simultaneously, whereas
we can generally only prove that the update will converge if they
are updated one by one. When we update the speaker vectors in
addition to the other parameters, we observe signs of instability: in
particular, we see likelihood improvements which are much less than
the total predicted criterion improvements from all the parameters.
This is not surprising, since now there are three sets of parameter
updates which we expect to interact badly, namely those forMi,
Ni andvjm, and three is more than two. The significance of this
is that there may now be directions in the parameter space where
the learning rate exceeds the “ideal” learning rate by more than a
factor of two, and this is the precondition for instability when the
objective function is well approximated by a quadratic (i.e. close to
convergence). In some experiments we prevent this instability by,
after a certain iteration, introducing a factor of 2/3 in theparameter
changes of the three named types of parameters. This is sufficient to
prevent the instability, and we do it only in later iterations since this
is when the instability seems to get started. The effect on criterion
and WER is small.



6. ADAPTATION

We can perform both fMLLR (Constrained MLLR) and MLLR
adaptation in the UBM framework. Computing the fMLLR and
MLLR transforms is different but not problematic in the UBM style
of system; we give the equations below. Applying the feature-space
transformation for fMLLR is of course trivial. Applying theMLLR
transform is difficult in conjunction with the fast evaluation frame-
work described in Section 3.2, but it can still be done, as described
in Section 6.2. The estimation of fMLLR and MLLR transforms
in the UBM framework described here is described below, but it
is acceptable to use transforms estimated using a normal diagonal
system; any differences in WER arising from this are very small.

6.1. Constrained MLLR/fMLLR estimation

In fMLLR adaptation, we are estimating a transformW such that:

x̂ = Wx
+, (57)

wherex̂ are the adapted features. The statistics we store are:

γi =
X

j,m,t

γjmi(t) (58)

K =
X

j,m,i,t

γjmi(t)
“

Σ−1
i µ

(s)
jmi

”

x(t)+
T

(59)

Qi =
X

j,m,t

γjmi(t)x(t)+x(t)+
T
; (60)

K is the linear term in the objective function andQi will be used to
work out the quadratic term. See Equation 7 for the adapted mean
µ

(s)
jmi. The update of the fMLLR matrixW starts from the default

matrix, i.e. whereW is a d by d + 1 matrix with ones along the
diagonal. We then do an iterative update as follows, for e.g.5 itera-
tions. First we precompute the matricesGd and their inverses; these
correspond to matrices used in the normal fMLLR computationand
represent the quadratic term for rowd.

Gd =

I
X

i=1

`

Σ−1
i

´

dd
Qi (61)

Then as we iteratively update each row, we compute the local gradi-
ent of the objective function with respect to the transform as:

δF
δW

≡ D = K −
I
X

i=1

Σ−1
i WQi (62)

The rest of the fMLLR computation for a particular row is as de-
scribed in [4], which we summarize hbelow. Letwd be the trans-
posedd’th row of W and the gradientdd be the transposedd’th row
of D. Then computeld = dd + Gdwd be the linear term in the
auxiliary function inwd, the auxiliary function being:

F = w
T
d ld − 0.5wT

d Gdwd + β log |detW−|, (63)

whereW− meansW without the last column, andβ =
PI

i=1 γi is

the total time. We letcd be thed’th column of W−−1
, which is pro-

portional to the cofactor used in [4], and the rest of the computation
is:

[a, b, c] = [βc
T
d G

−1
d cd, lTd G

−1
d cd,−1] (64)

k =
−b +

√
b2 − 4ac

2a
(65)

wd := G
−1
d (ld + βkcd) . (66)

We have presented a simplified version of the computation that does
not allow sign changes, i.e.W− is constrained to be positive def-
inite. We have previously found that this makes no difference in
practice.

6.2. MLLR estimation

The problem is that we need to recompute the normalizersnjmi for
each speaker, which is a significant burden, especially if there are
many short speakers. An alternative is to use the unadapted sys-
tem to compute the likelihood contributionslog p(x; j, m, i) within
a particular statej from each mixturem and each retained Gaussian
indexi, and then only do the MLLR computation for those Gaussians
within a particular beam (e.g. 4). However, this is still significantly
slower than not applying MLLR at all.

For convenience, we do not use a regression tree

6.3. MLLR

Currently our subspace mixture model system is trained and tested
using VTLN warp factors and fMLLR/CMLLR transforms obtained
using our baseline. Thus we avoid having to implement these algo-
rithms within the UBM framework. We have implemented MLLR
adaptation in the UBM framework, which sometimes seems to give
slightly better results than using a (single) MLLR transform ob-
tained from a baseline system. MLLR also appears to give most
of its normal improvement even after using the speaker vectors as
described above, which is somewhat surprising as the techniques are
quite similar. Since the UBM is in effect a full covariance model,
we had to modify our algorithms, and in fact the accumulationphase
is now quicker than in the baseline. The statistics we store consist
of i) statistics the same size as the MLLR transform, which basi-
cally contain the linear term of the objective function as a function
of the transform parameters and ii) a set of full-covariancestatis-
tics, one for each UBM Gaussian index, which consist of weighted
outer products of [extended] mean vectors, including a count for
each UBM Gaussian index. The MLLR computation given these
statistics is an iterative row-by-row computation. A similar scheme
would be possible for fMLLR, in which the full-covariance statis-
tics would be over [extended] data vectors rather than means. The
general approach is described in [5], although note that there is an
error in Section 3.1 (missing data counts). We use a single regression
class as the improvement we get from using multiple classes is very
small. Decoding using MLLR is very slow due to the need to recom-
pute the normalizersnjmi and gives very little improvement on top
of the speaker factor approach described below, so it is not essential
to include. In addition, the WER difference between estimating the
MLLR transform using the UBM framework directly versus simply
inheriting it from a conventional system is small if it exists at all.

7. DISCRIMINATIVE TRAINING

7.1. Model-space discriminative training: overview and accu-
mulation

The discriminative training experiments reported here aredone with
boosted MMI [6], although we could also use MPE or normal MMI.
Because the final auxiliary functions that we optimize during train-
ing are mostly quadratic functions of the parameter, it is possible
to formulate an Extended Baum-Welch like update as a very sim-
ple rule, which says: take the difference of the linear termsg of the
numerator and denominator auxiliary functions, but the sumof the



quadratic termsH. First, we must make sure that the auxiliary func-
tion is formulated in terms of the change in parameter, rather than
the parameter itself; this ensures that the auxiliary function formu-
lated as described has the correct gradient. In addition we set a speed
parameters for each of the parameter types, e.g.sw for the weight
parameters, etc., and divide the quadratic term in the auxiliary func-
tion by this speed.

In discriminative training, since we start from an ML-trained
system we only need the non-initial style of accumulation and up-
date. The accumulation is quite a simple modification of the ML
accumulation as described in Section 4.4. On each frame we have
both denominator and numerator occupation probabilitiesγnum

jmi (t)

and γden
jmi(t), obtained (for boosted MMI training) after forward-

backward alignment of numerator and denominator lattices and can-
celing of statistics on each frame as described in [6]. The random-
ized discretization described in Section 4.4.1 is applied to both nu-
merator and denominator occupation probabilities. There is no I-
smoothing or equivalent, so we have no ML statistics. We duplicate
our count statistics into numerator and denominator counts, but store
the other statistics in combined form:

γnum
jmi =

T
X

t=1

γ̃num
jmi (t) (67)

γden
jmi =

T
X

t=1

γ̃den
jmi(t) (68)

xjm =

T
X

t=1

I
X

i=1

(γ̃num
jmi (t) − γ̃den

jmi(t))
“

M
T
i Σ

−1
i x(t)

”

−

(69)

Xi =
X

t,j,m

(γ̃num
jmi (t) − γ̃den

jmi(t))
`

Σ
−1
i x(t)

´

v
T
jm (70)

Si =
X

t,j,m

(γ̃num
jmi (t) − γ̃den

jmi(t))

(x(t) − Mivjm)(x(t) − Mivjm)T . (71)

7.2. Model-space discriminative training: update

As with the Maximum Likelihood update described above, it isim-
portant that the update equations for each parameter type (weight-
projections, mean-projections, etc.) “see” only the pre-update values
of the other parameter types. We have avoided making this explicit
with iteration indices as this would clutter the equations.

7.2.1. Weight-parameter update

The discriminative weight parameter update is as follows, controlled
by speed parametersw, e.g.sw = 1.0. We use the total per-mixture
counts e.g.γnum

jm =
PI

i=1 γnum
jmi .

gi =
X

j,m

((γnum
jmi − γden

jmi) − (γnum
jm − γden

jm )wjmi)v
+
j (72)

Hi =
P

j,m

`

max(γnum
jm wjmi, γ

num
jmi ) + max(γden

jm wjmi, γ
den
jmi)

´

v+
j v+

j

T
(73)

wi := wi + swH
−1
i gi. (74)

The auxiliary function improvement is0.5swgiH
−1
i gi

1. Note that
the values ofwjmi we use in this discriminative update are always

1This formula assumes that we applysw at the auxiliary function level,
to the second gradientHi.

the pre-update values. This update it not iterative, being applied only
once during each update phase.

7.2.2. Mean-projection matrix update

For the mean-projection matrix update, again we use the normalizing
transformTi = Σ−0.5

i , and project to getM′

i = TiMi.

g
abs
id = transposed d′th row of TiXi (75)

H
num
i =

X

j

γ̃num
jmi v

+
jmv

+
jm

T
(76)

H
den
i =

X

j

γ̃num
jmi v

+
jmv

+
jm

T
(77)

gid = g
abs
id − (Hnum

i − H
den
i )m′

id (78)

Hi =
“

H
num
i + H

den
i

”

(79)

m̂′
id := m

′

id + smH
−1
i gid. (80)

The auxiliary function improvement is given by0.5smgT
idH

−1
i gid.

Again we transform back by settingMi := T−1
i M′

i.

7.2.3. Vector update

In the discriminative vector update we precompute summed counts
such asγnum

jm =
PI

i=1 γnum
jmi . The update is:

H
(1)
jm =

X

i=1

max(γnum
jmi , γnum

jm wjmi)w
−

i w
−

i

T

+ max(γden
jmi, γ

den
jm wjmi)w

−

i w
−

i

T
(81)

H
(2,num)
jm =

I
X

i=1

γnum
jmi

“

M
T
i Σ

−1
i Mi

”

(82)

H
(2,den)
jm =

I
X

i=1

γden
jmi

“

M
T
i Σ

−1
i Mi

”

(83)

gjm =

I
X

i=1

(γjmi − γjmwjmi)w
−

i

+xjm −
“

(H
(2)num
jm −H

(2)den
jm )v+

jm

”

−

(84)

Hjm =
1

sv

“

H
(1)
jm + H

(2)num
jm

−

+ H
(2)den
jm

−
”

(85)

v̂jm := vjm + H
−1
jmgjm. (86)

Again we cache the quantityMT
i Σ−1

i Mi. The auxiliary function
improvement is given by0.5gT

jmH−1
jmgjm.

7.2.4. Variance update

For the discriminative variance update, letγnum
i =

P

j,m
γnum

jmi and
similarly for the denominator counts. We setE = 2.0/sσ , to trans-
late from the “speed” notation to the notation of Extended Baum-
Welch updates. For eachi, we setDi = Eγden

i , and the update
is:

Σ̂i =
Si + DiΣ

γnum
i − γden

i + Di

. (87)

As an additional check, we make sure that the updatedΣ̂i is positive
definite when computed as above but withDi at half its value. If not,
we increaseDi in increments until this condition holds. The total
auxiliary function improvement is:

P

i
−0.5

`

γnum
i − γden

i + E
´

“

log |det Σ̂i| − log |detΣi| + tr((Σ̂−1
i − Σ−1

i )Σ̂i)
”

.



7.2.5. Substate weight and UBM parameter updates.

We do not bother updating the substate weights discriminatively,
since we anticipate that the effect of this will be small. We also
do not update the UBM parametersµ̄i andΣ̄i.

7.2.6. Limiting parameter changes

The discriminative update as described so far seems to be prone to
instability. This is apparent in various ways: we the objective func-
tion starting to fall after climbing for a few iterations, and the word
error rate starting to degrade. This can be somewhat improved by
decreasing most of the speedss from their default values of 1, e.g.
we favor the settingssm = 0.5, sv = 0.5, sσ = 0.5, sw = 2. How-
ever the word error rate still degrades substantially afterreaching its
optimim in about four iterations, and if we look at the auxiliary func-
tion improvements for different UBM Gaussian indicesi we see that
for some values ofi these improvements rise with iteration number
and reach very high values, indicating likely divergence. In order to
ameliorate this problem we introduced limits on the maximumaux-
iliary function improvement per frame, for the four different kinds
of parameters. The number of frames in this case is defined as the
total numerator plus denominator count, i.e.γnum

i + γden
i where

γnum
i =

P

j,m
γnum

jmi , etc. We define a maximum auxiliary function
improvement per frame for different parameter classes; these are ob-
tained from viewing a scatter plot the measured auxiliary function
improvements per frame for these parameter classes for differenti
against the counts for the samei, and looking at the maximum of
the bulk of the distribution as the counts become reasonablylarge.
These limits are: 0.01 for weight projections, 0.01 for variances,
0.04 for mean projections, and 0.1 for vectors. If for a particular i
the measured auxiliary function improvement per frame exceeds this
by a certain factorf , we scale the parameter change by1/f . In the
case of the vectors this statement must be applied for a particular
substatej, m. The effect on WER on the best iteration of this lim-
iting operation is minimal, but it does slow the pace of the eventual
degradation.

7.2.7. Feature-space discriminative training

Feature-space discriminative training, introduced in [7]but using the
recipe from [8] which is significantly better, is an important part of
our baseline system, e.g. see [6] for typical improvements on a va-
riety of setups. We find that feature space discriminative training
gives less improvement in the subspace mixture model systemthan
with our baseline system; in fact, the gains of feature-space plus
model-space versus model-space only training are very marginal.
We believe there are two possible reasons for this. One is that the
Gaussian mixture model used for fMPE/fMMI is very similar tothe
Gaussian mixture model used for the UBM (in fact they are obtained
in basically the same way), and the two techniques may be exploit-
ing similar kinds of phenomena. Another is that since we are in
effect using full covariance models, any linear transformations of
the feature space that fMPE/fMMI might be doing will have no ef-
fect because the models will simply move to compensate. We have
implemented feature space discriminative training but theimprove-
ments were quite small compared with feature space discriminative
training on top of a normal system, so we only briefly describethe
methods used.

Computation of the “direct differential” is very simple. The “in-
direct differential” involves some choices, and rather than attempt
to justify them we will simply state our approach: we computethe
indirect differential via only the within-class variancesΣi and the

mean-projection matricesMi. This can be done starting from the
same statistics that we use for normal discriminative training. When
updating the model with ML on each iteration, we only update the
within-class variances and mean-projection matrices. Every other
aspect of the computation is the same as in our baseline fMPE/fMMI
computation.
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