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Summary

This thesis investigates the use of discriminative criteria for training HMM pa-
rameters for speech recognition, in particular the Maximum Mutual Information
(MMI) criterion and a new criterion called Minimum Phone Error (MPE).

Investigations are conducted into the practical issues relating to the use of MMI
for speech recognition, and an implementation is described which gives good im-
provements in Word Error Rate for state-of-the-art systems on large vocabulary
tasks such as Switchboard, Broadcast News and American Business News. Fea-
tures of this implementation include the use of lattices to represent alternative
transcriptions of the training data; acoustic likelihood scaling to take account
of less likely alternative sentences; unigram language models; and a particular
way of setting the learning rate in the Extended Baum-Welch update formulae.
Implemented in this way, MMI training gives improvements wherever there is a
sufficiently large ratio of training data to Gaussians in the HMM set.

The concept of weak-sense auxiliary functions is introduced as a tool to help in
function maximisation problems. A weak-sense auxiliary function is a function
which has the same gradient as a function to be maximised, around some local
point. This is useful for optimisation in cases where what is here termed a
strong-sense auxiliary function (as used in Maximum Likelihood updates) cannot
be found or does not give an efficient update rule. Weak-sense auxiliary functions
can be considered a generalisation of gradient descent. The concept of weak-sense
auxiliary functions is used to give a derivation for the Extended Baum-Welch
update formulae.

A discriminative criterion is introduced called Minimum Phone Error, which is a
smoothed measure of phone transcription error. Methods are described for the
optimisation of the MPE objective function and experimental results are given
on a number of different corpora. A technique called I-smoothing is introduced
which improves generalisation with MMI and MPE training. I-smoothing can be
viewed as a form of MAP estimation with a prior distribution centered around the

ML parameter estimates. It is essential in order for MPE to give improvements
over MMI.

Extensive experiments on a number of different large and medium-vocabulary
corpora show that MPE reliably gives better results than MMI. Discriminative
training is predicted to give increasing improvement relative to MLE as more
training data becomes available.
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Chapter 1

Introduction

This thesis investigates the discriminative training of Hidden Markov Model
(HMM) parameters. HMMs are introduced in detail in Chater 1, but broadly
speaking they are a statistical model of speech production. Their “parameters,”
which consist of means and variances of distributions and various other probabil-
ities included in the model, are generally estimated as statistical distribution, so
for instance the mean would be set to the mean of the appropriate observed data.
Discriminative training of HMM parameters is the optimisation of the HMM as
a classifier, so that the means and variances and other parameters are adjusted
to as to improve the HMM'’s classification performance on the training data.

Most previous work on discriminative training for speech recognition has focused
on two training criteria: the first of these, Maximum Mutual Information (MMI,;
also known as Maximum Conditional Likelihood) is the likelihood assigned by the
HMM to the correct transcription of the training data, which is to be maximised.
The other training criterion, Minimum Classification Error (MCE) is a smoothed
approximation to the classification error, which is to be minimised.

The work presented in this thesis can be divided into two parts: firstly, work on

the practical aspects of the use of MMI for large vocabulary speech recognition.

This describes a specific implementation of MMI which uses lattices to speed up
HMM training, and experimentally investigates various aspects of the training
procedure. This work builds on previous work done in Cambridge [Valtchev et al., 1996],
and was done in collaboration with Phil Woodland; much of the work on MMI

has been published previously, e.g. in [Woodland & Povey, 2000].

The second part of the work relates to a new discriminative criterion, Minimum
Phone Error (MPE). (Note however that this is equivalent to a criterion devised
independently elsewhere, known as the Overall Risk Criterion [Na et al., 1995,
Kaiser et al., 2000]). Work presented here shows that in combination with an
appropriate technique to smooth parameters for which there is insufficient train-
ing data, MPE can consistently improve on MMI and give useful improvements
for large vocabulary recognition tasks.



2 CHAPTER 1. INTRODUCTION

Chapter 2 introduces the speech-to-text problem, introduces HMMs and gives a
general overview of the history of automatic speech recognition.

Chapter 3 discusses the concept of a “discriminative objective function” and
introduces the objective functions used in MMI, MCE and MPE.

In discriminative training, the maximisation of the discriminative objective func-
tion is a difficult problem. This is addressed in Chapter 4, which develops some
theory relating to objective function maximisation.

Chapter 5 concerns the implementation of lattice-based MMI. It presents experi-
mental results concerning various aspects of the implementation of MMI training:
for example, the language models used in training, the size of the lattices, the
speed of optimisation and the scaling of log likelihoods.

Chapter 6 gives theory and experiments regarding various (mostly slight) alter-
ations to the EB update equations.

Chapter 7 introduces the Minimum Phone Error (MPE) criterion, describes the
techniques used for its optimisation.

Chapter 8 experimentally investigates various practical issues relating to MPE
training, and gives results comparing MPE with ML and MMI training under
various conditions and for various large vocabular corpora.

Chapter 9 contains a conclusion and summary and suggestions for further work.



Chapter 2

Introduction to speech
recognition

2.1 The Speech Recognition Problem

The speech recognition problem, as it has traditionally been defined (and as
defined in this thesis), is the task of taking an utterance containing a certain
length of speech data (call this utterance Q) and transforming it into a text
string F(Q) which is as close as possible to the transcript that a careful human
would generate.

The task is to find a function F(-) which does the job as well as possible. The
way in which the success of F(-) is generally evaluated is to calculate F(O) for a
number of speech files O comprising a test set of speech data, and calculate the
Error Rate of the output (Figure 2.1).

The F(-) we generally want is the one that has the lowest Error Rate.

2.1.1 Speech Recognition using Training Data

It was recognised early on that the function F(-) cannot simply be crafted by
hand. There are many reasons for this:

e It is too difficult to find a function F(-) that would work well.
e One would have to try many functional forms for F(-) and try them out on
a limited amount of test data; this would lead to learning of the test data

and possibly poor generalisation to other similar data.

e It would not be straightforward, having obtained a suitable F(-) for a given
language or task, to transfer it to another language or task.

3



4 CHAPTER 2. INTRODUCTION TO SPEECH RECOGNITION

Error Rate
The Error Rate, often expressed as a percentage figure, is defined as:

100(#substituted + #deleted + #inserted)
#ref words

Error Rate =

where #ref words is the number of words in the correct (reference) transcription.
Substituted, deleted and inserted words are defined with respect to an alignment
between the reference and hypothesis transcriptions. This alignment is chosen so
as to minimise the error.

The Error Rate of current speech recognition systems ranges from around 50% for
the most demanding tasks such as transcribing recordings of meetings, to under

1% for transcribing digit strings recorded under good conditions.

Figure 2.1: Error Rate

To avoid having to construct the final speech recogniser entirely by hand, modern
speech recognition systems require training data. This consists of R speech files
O, for r =1... R, each with a corresponding human-generated transcription s,.
The problem now becomes one of finding an appropriate function

F(O; 01,0, ...0g) which will evaluate an unseen sentence O based on infor-
mation gathered from the training data. The function F(-) will then include a
specification of how exactly the training files O;, O,y ... Og are used to create a
speech recognizer. Viewed in this light, it is clear that the key to the function
F(-) is how it generalises from the training examples to unseen data. Some gen-
eralisations will clearly be more appropriate than others, and the task of a speech
recognition researcher is to find a function F(-) (i.e. a speech recognition sys-
tem) that makes the appropriate generalisations. To give an example: a speech
recognition system that views the speech signal as a binary representation of a
large number and tries to analyse it in terms of its prime factors will not get
very far. The observation that different generalisations are needed for different
circumstances is supported by the “No Free Lunch Theorem” [Wolpert, 1994|
which says that no inductive problem can be solved by a single algorithm which
will always be better than other algorithms regardless of the examples supplied.

2.2 Statistical Speech Recognition

For good speech recognition performance, it is essential to take into account that
some sequences of words are more likely to be heard than others. Statistical
models are used to estimate the prior probability that any given sentence s will
be uttered. This part of the task is called language modeling. The aim of lan-
guage modeling is to find the probability of a sequence of words wiws ... wx. The
most common language models are so-called n-gram models, in which the prob-
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Bayes’ Rule

Bayes’ Rule states that: P(A|B) = w, where P(XY) is the probability
of event X given that event Y is known to have happened; and P(X) is the prior
probability of event X if nothing else is known. Events X and Y might represent,
for instance, breaking one’s leg today and being run down by a car today. If one
is known to have happened, it will affect our estimate of the likelihood that the
other has happened.

Bayes’ rule can be written P(A|B) = %
A is discrete), with p(X) being the value of the probability density function (p.d.f.)

if B is a continuous variable (but

from which those events are drawn, at the point X.

Figure 2.2: Bayes’ Rule

ability of the £’th word is made conditional on the previous n-1 words, so that
p(wy ... wy) = Hszlp(wk|wk_1 ... Wg_nt1).- These probabilties can be estimated
from observed counts in large collections of transcribed speech or other text.

Most successful speech recognition systems use statistically-based approaches not
only for language modeling but also for acoustic modeling, to evaluate how well
a given speech file O matches a proposed sentence s. Acoustic and language
information is combined through Bayes’ Rule (Figure 2.2). This combines the
information from two sources: a statistical model of word sequence probability
(which sentences are more likely) and a model of speech production (how the
properties of the speech signal relate to what is being said).

As applied to speech recognition, Bayes’ Rule lets us write:

P(s)p(Ols)

P(s10) = =T,

(2.1)

i.e, the posterior probability P(s|O) of sentence s being the true transcription of
the utterance O, equals the likelihood p(O|s) of O being observed if s was spoken,
multiplied by the prior probability P(s) of s and divided by a normalising term.
The posterior probability P(s|O) gives information about which sentences are
most likely to have been said. The s for which P(s|O) is largest is the one most
likely to have been said, so if the speech recogniser outputs this s it will have the
greatest chance of being correct.

The acoustic model P(O|s) is generally based on a Hidden Markov Model (HMM)
(see Section 2.3).

Note that in practice the language model term P(s) has to be scaled by a powers
to give P(s)*, for say @ = 15. This is to prevent the language model proba-
bilities being overpowered by the acoustic likelihoods, which tend to be highly
correlated between frames and so overestimate the system’s confidence in the
acoustic information.
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2.2.1 Preprocessing of speech

Until now, the symbol O has been used to represent an utterance without speci-
fying its format. The raw data which a speech recogniser receives as input is the
speech waveform itself, which consists of sampled voltages taken from a micro-
phone at a rate of perhaps 16kHz. This data is preprocessed before being used
by speech recognisers. This means taking short segments of, say, 20ms of speech,
and using signal processing techniques to turn it into a vector of typically 20-60
dimensions which describes the characteristics of the speech “frame”. The vector
typically represents the short-time spectral envelope of the speech signal. This is
done for frames of audio data taken at intervals of 10ms or so and the resulting
feature vectors are denoted o(1)...0(T). The feature vectors taken together are
referred to as 0. See Figure 2.3 for a summary of some of the techniques used in
feature extraction.

2.2.2 Speech units and Dictionaries

It is necessary in large vocabulary speech recognition to be able to relate written
words to their pronunciation in phones. This makes it possible to synthesise words
for which there no examples in the acoustic training data, which will always tend
to be necessary even for very large amounts of acoustic training data. Phones are
the basic sounds of a spoken language, and there generally thirty to forty phones
for a typical language. A phone is written for instance as /k/ for the sound
corresponding to the letter k, to distinguish it from the letter. Many phones are
denoted using special symbols only found in the Phonetic Alphabet.

Dictionaries (or lezicons) are used in speech recognition to tell the system how
words are pronounced by giving their sequence of phones.

2.3 HMDMs in speech recognition

The central component of a modern speech recognition system is the Hidden
Markov Model (HMM). A HMM is a statistical model for the production of
sequences of symbols (or sequences of vectors of continuous numbers, in this
case). A HMM has states j = 1... N, and transition probabilities a;; between
each pair of states. It also has a starting state and an ending state (although
these are sometimes represented as starting and ending probabilities. Some states
(emitting states) have output distributions b;(x) over the set of output symbols
(which might for instance be a continuous vector x, or a set of discrete symbols).
It is most easily explained by means of a picture (Figure 2.4). This HMM has
five states, and three emitting states. On the first time instant the HMM is in the
state on the far left. At each step, the HMM pictured will output a real number
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Speech Preprocessing

The speech preprocessor converts the approximately 20ms long frames of raw acous-
tic waveform data into feature wectors of perhaps 40 or more dimensions. The
fundamental criterion for a good preprocessor is that it should make a speech
recogniser work well, but in general that means that the features (components of
the vector) should be:

e Independent— i.e. not very correlated with each other.

e Salient— i.e., should tell us something relevant to speech recognition. Gener-
ally this means it should contain information about the spectral envelope.

Well known preprocessing algorithms include those based on:

e Mel Frequency Cepstral coefficients (MFCC)— the cepstrum is what
results from taking the Fourier transform of a log energy spec-
trum; the spectrum is first warped according to the Mel frequency
scale [Davis & Mermelstein, 1980].

o Cepstral coefficients derived from a linear prediction-derived Mel frequency
warped spectrum to take into account human frequency sensitivity (MF-
PLP) [Hermansky, 1990].

¢ RASTA PLP, which is like MF-PLP but with tech-
niques to normalise the effect of varying channel proper-
ties [Hermansky, Morgan, Bayya & Kohn, 1991].

Techniques used to supplement that initial preprocessing include:

o Delta and Delta-delta coefficients: these are the first and second differentials
of the feature vector w.r.t time, often calculated as differences.

Deltas (A) are the differential between successive frames; Delta-Deltas (AA)
are the difference between successive Deltas. These are appended to the
original vector of coefficients. (Deltas and Delta-deltas may actually be
gradients estimated using a window of e.g. 5 frames rather than just a
difference of successive frames).

e Linear Discriminant Analysis: a matrix transformation of the feature vec-
tor intended to maximise separation between different classes (e.g. phone
classes) [Haeb-Umbach & Ney, 1992, Saon et al., 2000].

e Mean and Variance Normalisation: Normalising the data in a given feature
dimension to have the same mean and variance for every file, to cancel some
of the speaker and channel variation.

e Vocal Tract Length Normalisation: a technique to warp frequencies to cancel
some speaker variations, especially the difference between male and female
speakers [Lee & Rose, 1996, Welling et al., 1999].

Figure 2.3: Speech Preprocessing
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| I |
1.0 0.4 03 0.45
TN 2N TN R
Q 0.6 O 0.7 O 0.55
Im/

Figure 2.4: Example: a HMM for /m/

drawn randomly from the distribution of the state it is in (if it is in an emitting
state), and will then randomly change state according to the likelihoods indicated
on the diagram. The sequence will finish when the exit state is reached, which
means the sequence of output values has terminated. HMMs used for speech
recognition would typically output continous vectors. This particular topology
of HMM (i.e. three states with left-to-right transitions) is one commonly used
to model phones; as an example, this HMM has been labeled /m/. Figure 2.5
shows two HMMs concatenated to form a word HMM for “me”. Alternatively
some small systems use a separate HMM for each word. Word HMMs would then
be concatenated to form a HMM for a sequence of words. In context-dependent
systems there may be a number of HMMs for a single phone, with different HMMs
for different phone contexts, i.e. the one or two phones on either side.

Early HMMs used discrete output symbols, which were obtained by so-called
“Vector Quantisation”; this refers to a process of clustering the feature vectors in
a subset of the training data and then quantising each vector according to which
cluster center it was closest to. At the moment essentially all work on speech
recognition uses continuous vector-valued output symbols, which are generally
modeled with a mixture-of-Gaussians distribution.

2.3.1 Definition of a HMM

For simplicity, let us assume that all states have an output distribution. In
practice, phone or word HMMs have “non-emitting” states (with no output dis-
tribution) at the beginning and end, but HMMs with such states can be regarded
as a shorthand for equivalent HMMs with all emitting states.



2.3. HMMS IN SPEECH RECOGNITION 9
AN SN T U
| | | | | |

o* 07 0% o* 07 0%

m/ fil

Figure 2.5: Example: a HMM for “me”

What is needed to define a HMM are a number of states j = 1...J, a transition
matriz containing probabilities a;; of a transition from state ¢ to state j, and
output distributions b;(x) for each state j, which will in general be Gaussian dis-

tributions or mixtures of Gaussians (i.e. sums of Gaussian p.d.f.’s). Constraints
on the HMM include:

e Transition probabilities from a state sum to 1: . a;; = 1.

e Output distributions b;(x) must integrate to 1.

A particular HMM will be described by the symbols M and A: M (the model)
is the topology of the HMM (in a simple case this would be the number of states,
number of Gaussians per state, a specification of which transitions between states
are allowed) and A is the model parameters— transition values a;; (where allowed)
and the parameters of the distributions b;(-). In the case of continuous speech
recognition, the symbol M is generally also used to indicate the way individual
HMDMs for phones are concatenated to form an HMM for whole sentences or sets
of sentences.

The parameters A refer to the transition and output-probability values for the
phone HMMs.

It is sometimes necessary to refer to the concept of a state sequence, which is
an ordered sequence of HMM states; let us use X to denote a state sequence of
length T, comprising a series of states (1) ...z(T).

An HMM will have start and end states (possibly more than one of each) and
associated probabilities, and these need to be specified. Since there are generally
only one start and end state with start/end probabilities of 1, it is easiest to
make this a constraint on state sequences X rather than complicate equations by
introducing extra terms corresponding to the start and end probabilties.
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Mixture-of-Gaussian HMMs

In most current speech recognition systems, the output probability density func-
tion b;(x) is a mixture of Gaussians b;(x) = M CjmN (X; jm, Ojm), where M
is the number of Gaussians in state j, c;n, is the weight for Gaussian m of state
J, and pjm and o}, are the means and variances of the Gaussians. The weights
¢jm are constrained to sum to 1 for each state.

2.3.2 Likelihoods with HMMs

One of the things one can do with a HMM is to calculate the likelihood of a
certain sequence of data given the HMM— i.e, the likelihood that the HMM
would have generated that particular sequence.

The likelihood, which can be written as p(O|M, ), of a speech file O consisting
of samples o(1) ...0(T), being produced from a HMM M with parameters A, is:

X t=1

i.e, the sum over all sequences X of the probability of the speech data O given
that sequence. If > is replaced by maxy, the expression becomes the so-called
Viterbs likelihood, which is the likelihood considering only the best path. This
is usually quite close to the likelihood obtained by summing over all possible
sequences, because the sum tends to be dominated by the largest term.

2.3.3 Recognition and training with HMMs

There are two main situations in which it is necessary to calculate HMM likeli-
hoods: during training of the HMM and recognition of speech data.

Training

When training HMMs for speech recognition we need a set of training files O,
(r =1...R), each with a known sentence s, corresponding to the utterance in
that file. From these sentences, together with a lexicon (a dictionary, which will
contain phonetic pronunciations of words) and a set of phone HMMs, we can
construct a sentence model M, from individual phone HMMs.

These models together with the speech data are then used to accumulate statis-
tics which can be used to derive a better estimate of the HMM parameters (by
increasing the likelihood of the training data given the HMM. The process in-
volves an implicit calculation of the likelihood of all possible paths X through
the HMM.
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This algorithm, known as the Baum-Welch algorithm, will be referred to again in
Section 4.2.3. See for example [Rabiner, 1993] for a description of this algorithm.
Briefly, the training process, known as Estimation-Maximisation (E-M) operates
in two phases. The first phase, the Estimation phase, involves accumulating cer-
tain statistics from the training data. This involves estimating the current distri-
bution over the hidden state-sequence variable X (hence “estimation”). Although
an explicit sum over the state-sequences would be computationallly impossible,
it is sufficient to know more limited distributions such as the distribution over
the currently active state for each frame of training data. This can be calculated
using an efficient algorithm known as the forward-backward algorithm, which in-
volves calculating probabilities of partial state sequences forwards and backwards
through the training data.

Recognition

In the case of recognition, the ideal approach would be to calculate p(O| M, A)
for a topology M, corresponding to each possible sentence s, in order to find
the sentence s with the highest posterior probability P(s|O) o P(s)p(O|Mg, A).
Unfortunately this would take an extremely long, even infinite, time since there
may not be a limit known to the possible length of sentences s. Algorithms
exist to find the best sentence with good accuracy without calculating the like-
lihood of every possible sentence. These generally involve some kind of pruning
which eliminates candiate word-sequences that do not look very promising. Some
recognition algorithms rely on finding a compact representation of the composite
HMM which contains both acoustic and language-model information.

2.4 History of speech recognition

The basic form of current speech recognition systems, which are based on HMMs
with mixture-of-Gaussian output distributions, dates from the mid-1980s.

Some of the very early work on speech recognition was done in the former Soviet
Union, which in the 1960s had an interest (premature, it turned out) in using
computers for human language processing and translation. Only three years after
the Fast Fourier Transform was made widely known, Vintsyuk published in 1968
his Dynamic Time Warping algorithm [Vintsyuk, 1968]. A similar algorithm
was proposed independently in 1971 by Sakoe [Sakoe & Chiba, 1971]. An aspect
of those algorithms which is still used today is the division of speech into short
frames (e.g, 100 per second), and the use of signal processing techniques to extract
the most salient properties of the local acoustic waveform into a “feature vector”
describing the properties of the sound for that time frame.

Early speech recognition techniques attempted to match a segment of speech
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to a “template” word, possibly using a nonlinear approach to warp time when
comparing the words, and used a distance measure between the two sets of feature
vectors to measure how good a fit it was. The best matching word was proposed
as the transcription of the waveform. A separate stage of processing was needed
to find the word boundaries prior to template matching.

The use of the Hidden Markov Model (HMM) for speech recognition was proposed
in 1975 with the introduction of the Dragon system [Baker, 1975]; this was made
more efficient in the later Harpy system [Lowerre, 1976] when “beam-search” was
introduced. It took another ten years from the introduction of Dragon before
research on Dynamic Programming algorithms was completely superseded by
research on HMMs. Although HMMs initially used discrete output distributions
(i.e, the feature vector was processed to produce one of a number of discrete
“symbols”, whose probabilities were estimated by the HMM), recent research has
concentrated on HMMs with continuous output distributions using a mixture of
Gaussians, as proposed in 1985 [Rabiner, Juang, Levinson & Sondhi, 1985].

Other improvements include the replacement of whole-word models with phone
models and then context-dependent phone models [Schwartz et al., 1985]; Maxi-
mum A Posteriori (MAP) estimation as a means of adapting models trained on
many speakers to a new speaker [Gauvain & Lee, 1994]; Maximum Likelihood
Linear Regression (MLLR) as a means to do the same thing by transform matri-
ces, needing less data [Leggetter & Woodland, 1995, Gales & Woodland, 1996];
techniques used to cluster phone models so as to generalise to unseen triphone
contexts, e.g [Young et al., 1994[; vocal tract length normalisation for adaptation
to male or female speakers, e.g [Lee & Rose, 1996, Welling et al., 1999|; Linear
Discriminant analysis to obtain more useful or compact feature vectors, as pro-
posed in [Haeb-Umbach & Ney, 1992], and improved versions of this using so-
called “heteroscedastic” methods [Kumar & Andreou, 1998, Saon et al., 2000].

Most systems currently used in large-vocabulary, multiple speaker speech recogni-
tion (e.g, those reported in the NIST 2001 workshop [NIST, 2001]), are standard
mixture-of-Gaussian HMM systems relying mostly on the techniques mentioned
above, but a competitive system from BBN Technologies uses a semi-continuous
or tied-mixture system [Huang & Jack, 1989], [Bellegarda & Nahamoo, 1989, [Bellegarda & Nahamc
[Paul, 1990]. Such systems distribute their Gaussians and mixture weights differ-
ently from normal mixture-of-Gaussian systems but work on essentially the same
principle.

Apart from these mainstream techniques, other directions of research have in-
cluded the investigation of neural nets (mainly as a front-end to HMM-based
recognisers); other kinds of statistically-based modeling such as segmental mod-
els; and discriminative training, which is the subject of this thesis. These tech-
niques have found use in small-vocabulary systems but have generally not proved
very useful in reducing error rate on the larger-vocabulary, more difficult tasks.
However, as will be shown in this thesis, discriminative training can be useful for
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large vocabulary tasks as well.

2.5 Discriminative training

A persistent strand in work in speech recognition over recent decades is dis-
criminative training. As mentioned previously, discriminative training means
the trianing of HMM parameters so as to optimise some measure of goodness-
of-recognition of the training data. Two of the most widely known discrim-
inative techniques are Maximum Mutual Information (MMI) [Bahl et al., 1986]
and Minimum Classification Error (MCE) [Chou et al., 1993, Juang et al., 1997],
although many more exist. Although many authors have demonstrated improve-
ments on small-vocabulary tasks from discriminative training, consistent improve-
ments in word error on large vocabulary tasks have been more elusive.

Probably the first published work to demonstrate the utility of MMI for a large
vocabulary task was done in Cambridge [Valtchev et al., 1996], although when
the same implementation of MMI was used on a different large vocabulary corpus
no WER improvement was seen . The work described in this thesis extends that
previous work and investigates in detail an altered implementation of MMI which
gives more consistent gains on large vocabulary tasks. Like [Valtchev et al., 1996],
lattices are used to encode competing hypotheses for recognition of the training
data, but various changes and improvements are made to the training algorithm
and all the aspects of training are experimentally investigated. The other main
contribution of this thesis is the presentation of a new discriminative training
technique called Minimum Phone Error (MPE). This consistently gives better re-
sults than MMI (although by a small margin), and appears to be a very promising
technique for discriminative training.

!Unpublished experiments by Phil Woodland and myself
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Chapter 3

Discriminative objective
functions

3.1 Introduction

HMMs are trained by optimising objective functions, otherwise known as train-
ing criteria. An objective function, which is to be either maximised or min-
imised depending on the particular objective function concerned, is a scalar func-
tion F(A; Oy ...Og) of the parameters A of the HMM set and the training data
O;...0p.

Objective functions are useful because they express in a simple and compact form
the essential aspects of a proposed HMM training technique, thus separating the
function optimisation part of the system from the definition of the objective
function itself. The function optimisation part of the system can then be judged
by how much it increases the objective function. This division of the problem
makes it easier to evaluate and improve the function optimisation, and easier
to transfer the discriminative technique to new kinds of models and systems,
than if the discriminative training were defined procedurally (as in the case in
so-called “boosting” techniques, in which greater weight is given to misrecognised
utterances).

Section 3.2 describes some of the best-known previously described discriminative
objective functions. Section 3.3 introduces the new Minimum Phone Error (MPE)
and Minimum Word Error (MWE) objective functions.

15
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3.2 Previously proposed discriminative criteria

3.2.1 The MMI and MCE objective functions

The standard objective function used in Maximum Likelihood training is as fol-
lows:

Fue(A) = ZlogpA (Ors) (3.1)

r=1

where s, is the correct transcription of the r’th speech file O,. This is the likeli-
hood of the observations of training data given the correct-transcription HMM.
Maximum Mutual Information (MMI) [Bahl et al., 1986] and Minimum Classifi-
cation Error (MCE) [Chou et al., 1993, Juang et al., 1997] are probably the two
most popular discriminative training criteria. The MMI objective function is as
follows:

&, (O] P(s,)®
Fan() = 3108 5= 5 5B sy

r=1

(3.2)

where P(s) is the language model probability (including scales and word insertion
penalties) for sentence s. The MMI criterion equals the posterior probability of
the correct sentence s,. Following [Schluter & Macherey, 1998], a probability
scale k is included since this is important if MMI training is to lead to good
test-set performance.

The MCE objective function was originally defined for isolated word recognition,
in which the utterance can be from one of a fixed number of classes i =1... M.
Class-conditional likelihoods ¢;(O; \) are defined as:

9i(O; A) = log p(O|M;, A), (3.3)
where M; is the HMM topology for the ¢'th class and A represents the HMM
parameters. A misclassification measure for each class is defined as follows:

1/n

1
di(0) = —gi(O; ) +log | 7—= > _expgi(O;A)n| (3.4)

JiFi

which will tend to be positive if the system does not classify the utterance as
being from class 7, and negative if the utterance is classified as class i. The
misclassification measures are then embedded in sigmoid functions:

1

= T+ exp(-7(0) &9

1;(0)
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where 7 > 0 and v > 0 are constants. The MCE objective function, which
is to be minimised, is the sum of [;(O) over all the correct classes. The ob-
jective function is zero for each sentence that is correctly recognised, and one
for each incorrect sentence; the transition between the two is “soft,” and hence
differentiable, controlled by the parameters 7 and 7. MOCE defined for the
case where there are a fixed number of classes (as in isolated digit recogni-
tion, for instance); for continuous speech recognition, the classes can be defined
as all possible word sequences, with the correct word sequence as the correct
class. This makes it necessary to somehow encode a list of those word se-
quences that have a reasonable probability for each sentence of training data.
This can be done using N-best lists [Chou et al., 1993], or more efficiently using
lattices [Schluter & Macherey, 1998| as explained in the next section.

3.2.2 Implementations of MMI and MCE

Although both MMI and MCE training are popular, there are few direct compar-
isons between the two in the literature. It was found in [Reichl & Ruske, 1995]
from experiments on a phone recognition task that MCE can outperform MMI,;
however, another author found for a continuous digit recognition task that MCE
was only better for HMMs with relatively few Gaussians [Schluter, 2000].

Many successful implementations of MMI have been reported in the literature,
but prior to the work described in this thesis there has been very little work on
MMI for large vocabulary continuous speech recognition. The only example I am
aware of is [Valtchev et al., 1996], although after the publication by myself and
Phil Woodland [Povey & Woodland, 2001] of our successf with MMI for large
vocabulary speech recognition, other groups have reported success with MMI for
large vocabulary tasks.

There appear to be no reports of large vocabulary implementations of MCE. It

should be possible in principle to implement MCE training for LVCSR: in [Schluter & Macherey, 1998]
an expression is given which unifies MMI and MCE into a single criterion suitable

for use with lattices. This is:

R

=3 (o6 ot ) 59

where for MMI we set the function f to f(z) = = and include all sentences in the

composite model Mrec, ; and for MCE we set f(z) = — +e,,z and exclude the cor-

rect sentence from Mprec,. & is a scale on the language and acoustic probabilities,
and might be set for instance to the inverse of the normal language model scale;

s, is the correct transcription of the r’th utterance. The equivalence with MCE
1

is valid if K = n = v and ignoring the factor ;7= in Equation (3.4). Note that

language model terms such as P(s,) in Equation 3.6 are assumed to already be
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scaled by the normal language model scale and to contain any insertion penalties
used in recognition. p%§(O,|M) indicates a likelihood calculated by scaling by &
all log sentence likelihoods before summing the likelihoods of sentences included
in the model M. MCE training can be implemented as a modification of the
Extended Baum-Welch (EB) procedure for MMI training, by scaling the state
occupation probabilities and sums of data accumulated from each training file
by the value of df(z)/0x, i.e. the differential of the sigmoid function, where z
is the value of the MMI criterion for that file [Schluter & Macherey, 1998]. Ex-
periments for continuous digit recognition showed that MCE only outperformed
MMI for HMMs with a small number of Gaussians [Schluter, 2000].

Preliminary experiments performed by the author on the Resource Management
corpus (not published) showed that excluding the correct sequence from the MMI
denominator Mrec, (which is referred to in this thesis as Mgen) degraded per-
formance. The other change necessary to implement MCE (changing f(z) from
the identity function to a sigmoid) was not tried since the first change was not
beneficial, and since the sigmoid introduces into the training algorithm an unde-
sirable dependence on the way the data is segmented into training files. That is,
if two recorded utterances are appended to form a single utterance this will affect
the outcome of MCE training with that data. If the full set of training data were
in a single file, MCE training implemented this way would be equivalent to MMI
training. MCE training makes most sense when there is likely to be only a single
error per file, e.g. in very small vocabulary or isolated-word recognition.

The problem with the MCE criterion for continuous speech recognition is that it
is related to the sentence error rate whereas the sentences, which are generally
defined to be equivalent to the files of training data, are just an arbitrary seg-
mentation of the available data. What is of most interest is the Word Error Rate
(WER), and it would seem to make sense to optimise this more directly.

3.2.3 Other discriminative criteria

Of the other discriminative criteria which have been proposed, one is Frame Dis-
crimination [Kapadia, 1998, Povey & Woodland, 1999] which can be viewed as a
modified form of MMI in which constraints on transitions between states are re-
moved. Another is the technique of “Overall Risk Criterion Estimations” (ORCE)
[Na et al., 1995] which applied to continuous speech recognition [Kaiser et al., 2000,
Kaiser et al., 2002] is identical to the Minimum Word Error proposed here in Sec-
tion 3.3.

The work on MWE described in this thesis was begun before [Kaiser et al., 2000]
was published; MWE is identical to ORCE in principle but the work published
here differs in some important aspects such as the use of lattices, MAP estimation
of parameters (I-smoothing) and the way the smoothing constants in the EB
update equations are set, as well as the emphasis on phone error rather than
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word error. The Overall Risk Criterion, which minimises a measure of risk, may
be particularly useful in specific tasks where the costs of different kinds of errors
are known, for instance in speaker verification or speech recognition for control
of particular devices. The methods described in this thesis are also relevant to
discriminative training using the Overall Risk Criterion.

3.3 Minimum Phone Error (MPE)

A criterion was developed which seems to be more suitable for continuous speech
recognition than MCE because it is more directly related to Word Error Rate
which is the scoring criterion generally used in continuous speech recognition.
The Minimum Phone Error (MPE) criterion is a smoothed approximation to the
phone transcription accuracy measured on the output of a word recognition sys-
tem given the training data. A related criterion, Minimum Word Error (MWE),
is a similar approximation to the word transcription accuracy.

The objective function in MPE, which is to be maximised, is:

Fare(A ZZPA 5|0,)A(s, s,), (3.7)

where A represents the HMM parameters; Py(s|O,) is defined as the scaled pos-
terior sentence probability of the sentence s being the correct one (given the
model)

PA(Or[s)"P(s)"
> PA(Or [u)* P (u)"
where x is a scaling factor typically less than one, O, is the speech data for the
r’th training sentence; and A(s, s,) is the raw phone transcription accuracy of the
sentence s given the reference sentence s,, which equals the number of reference
phones minus the number of errors.

Py (s]0;) = (3.8)

The criterion is an average over all possible sentences s (weighted by their like-
lihood given the recognition model) of the raw phone accuracy for that file.
In terms of individual sentence-conditional likelihoods, expanding the x terms
P} (s|O,), the objective function can be expressed as:

s PA(Or]5)"P(s)" A(s, sr)
Z 2 2uPA(Or[u)*P(u)

It is important to emphasise that while the MPE criterion maximises a measure
of phone transcription accuracy, this is done in the context of a word recognition
system. So, for instance, given a number of competing word-level transcriptions
of a sentence, the MPE criterion will try to make the more accurate transcriptions
more likely; and it will measure accuracy based on how many phones are correct.

(3.9)

j:MPE
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3.3.1 Scaling likelihoods

All sentence and language model log likelihoods in the MPE objective func-
tion (Equation (3.7)) are scaled by the power . The function of this is to make
the less likely sentences contribute to the objective function and make the MPE
objective function more smoothly differentiable. The power & typically equals the
inverse of the language model scale used in recognition, or a value in the range
% to % if no statistical language model is used.

Note that the language model probabilities P(s) appearing in Equations (3.7)
and (3.9) are assumed already to contain any likelihood scales and insertion
penalties used in recognition. (This notation for scaling likelihoods is used fol-
lowing [Schluter & Macherey, 1998]). As the scale k becomes large, the MPE
criterion for each file approaches the value of A(s,s,) for the most likely tran-
scription s of that file. As k becomes smaller the criterion increasingly takes
into account the accuracy of less likely sentences. This improves the ability of
the trained system to generalise to unseen data, by taking into account more

alternative hypotheses.

3.3.2 Minimum Word Error (MWE)

The MWE objective function is the same as MPE, except that the function
A(s, s;) (which for MPE equals the number of reference phones minus phone
errors) is calculated on a word rather than phone basis. MWE is a more ef-
fective criterion than MPE for maximising the training set word accuracy but
consistently gives slightly poorer results on the test set (see Section 8.16).

It seems likely that as the amount of training data relative to HMM set size
approaches infinity, MWE will give better results than MPE because it is a closer
approximation to the word error. So far it has not been possible to verify this;
for typical ratios of training data to HMM set size, MPE seems to consistently
give slightly better test set results than MWE.

3.4 Comparison between objective functions: ex-
ample

Imagine a simple task in which the only two sentences are “a” and “b”, and “a”
is the correct transcription of the current training file.

Defining a = p)(O|“a”)P(“a”) as the acoustic likelihood multiplied by the lan-
guage model probability of the sentence “a”, and b as the same for “b”, the
contribution of a particular training file to the four objective functions consid-
ered here is given as follows:
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Figure 3.1: MPE vs. MMI criteria for one correct and one incorrect hypothesis.
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Note that in this case the contribution to the MMI objective function is equal to
the log of the contribution to the MPE objective function. This is so only because
the raw phone accuracy of “a” happens to equal 1 and that of “b” happens to
equal 0. The difference the log makes is that as the file becomes increasingly
wrongly recognised (to the left of the graph in Figure 3.1) the MMI criterion
continues to decrease while the MPE criterion approaches a minimum value.
This means that words or files which have not been transcribed correctly or are
so poorly pronounced as to have no realistic chance of being correctly recognised,
will not be given as much importance by MPE as by MMIL.

In this particular example, if kK = v the MCE and MPE criteria are related by
the equation: Fypg = 1 — Fumcge, which makes them equivalent because MCE
is minimised while MPE is maximised. Again, this equivalence relies on the
choice of candidate phone sequences and is not general: for sequences of length
greater than one phone, MPE and MCE become diffrent because MPE measures
correctness on a phone rather than whole-sentence basis.

An important difference between MPE and the other criteria is that the weighting
given by the MPE criterion to an incorrect hypothesised sentence depends on the
number of wrong phones is it, whereas the MMI and MCE criteria make a binary
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distinction based on whether the entire sentence is correct or not.

A clear advantage of MPE over MCE is that in the limit of very long sentences
MCE would be of no use at all, since the posterior probability of the correct
sentence would approach zero and the MCE criterion would have zero gradient
w.r.t the log-likelihood of the correct HMM. This problem can be solved by using
MCE at the level of words rather than sentences [Bauer, 2001], but only at the
expense of deciding on an equally arbitrary word-level segmentation. In contrast,
MPE is essentially invariant to the splitting or concatenation of the training data
files.



Chapter 4

Function maximisation

This chapter gives a theoretical basis for the use of the Extended Baum-Welch
(EB) equations in MMI optimisation, based on the concepts of strong-sense and
weak-sense auxiliary functions which are introduced here.

Section 4.1 gives a brief introduction to the optimisation of discriminative objec-
tive functions. Section 4.2 introduces the concept of strong-sense and weak-sense
auxiliary functions and shows how they relate to the Baum-Welch and Extended
Baum-Welch equations respectively. Section 4.3 explains how prior information
can be integrated into auxiliary functions for MAP updates, and derives the
technique of I-smoothing which is a MAP update of the discriminatively trained
parameters. Section 4.5 reviews the original justification of the EB update equa-
tions which were presented in [Gopalakrishnan et al., 1989].

4.1 Introduction

Maximum Likelihood parameter estimation for mixture-of-Gaussian HMMs is
considered a solved problem; the standard approach is given in [Juang, 1985].
The estimation procedure is based on the Expectation-Maximisation (EM) tech-
nique [Dempster et al., 1977]. This is an iterative procedure in which each it-
eration is a two-step process, and which is guaranteed to converge to a local
maximum of the data likelihood. The first step (“Estimation”) involves accumu-
lating statistics which depend on the current “estimated” distribution of a hidden
variable (the state-sequence variable in this case). The second step (“Maximisa-
tion”) maximises an “auxiliary function”. This auxiliary function is a function
which if its value is increased the likelihood of the data given the HMM is bound
to increase also. The auxiliary function is an easier function to directly maximise
than the true likelihood function.

For discriminative criteria, the optimisation problem is much more difficult be-
cause an update rule which is guaranteed to increase the objective function and

23
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which also has fast convergence appears to be impossible to derive. Attempts to
prove such update rules (e.g [Gopalakrishnan et al., 1989]) tend to only be suc-
cessful in the limit as the change in parameters becomes extremely small for the
discrete case, or infinitely small in the continuous case [Normandin & Morgera, 1991].

To solve the problem of optimising discriminative criteria, a number of gradient-
based solutions have been proposed: for instance, Generalised Probabilistic De-
scent (GPD) [Juang & Katagiri, 1992] is a popular gradient-based technique.
Gradient-based techniques are quite diverse; in the context of optimising the
Frame Discrimination criterion, which is similar in principle to MMI, a num-
ber of gradient based techniques are compared in [Kapadia, 1998]. There is
also the more “EM-like” technique of the Extended Baum-Welch (EB) formu-
lae [Gopalakrishnan et al., 1989, Normandin & Morgera, 1991].

The work on discriminative training presented here has focused on the Extended
Baum-Welch (EB) update equations. These have the advantage of being rela-
tively simple to implement as they do not require statistics from more than one
iteration of training. The EB update equations are also easy to combine with
prior information over the HMM parameters.

The EB and gradient-based approaches are almost equivalent given appropriate

choice of smoothing constants and learning rates respectively [Schluter et al., 1997,
Zheng et al., 2001], and the remaining differences between the two make little

practical difference for Gaussian updates (e.g. see experiments reported in Chap-

ter 6). One advantage of the EB approach is that the concept of auxiliary func-

tions which is used to justify it can also lead to an effective optimisation technique

for the weights and transitions (Section 4.4), whereas gradient descent is difficult

to apply in the presence of the sum-to-one constraint that the weights and tran-

sitions are subject to.

4.2 Strong-sense and weak-sense auxiliary func-
tions

If a function F(A) is to be maximised, then G(A, \') will be said to be a strong-
sense auziliary function for F(X) around X', iff

GAN) =GN, X) < F(A) = F(X), (4.1)

where G(A, ') is a smooth function of A. A strong-sense auxiliary function is
the kind of auxiliary function used in Expectation-Maximisation (EM). The idea
is illustrated in Figure 4.1(a). A maximum w.r.t. A of the function G(A, ) is
found, indicated by the arrow. If this increases G (the lower line), it will also
increase JF; if G is at a local maximum then F is also at a local maximum. These
conditions follow from Eq. (4.1), and imply that repeated maximisation of the
auxiliary function is guaranteed to reach a local maximum of F(X).
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v
-

(a) (b)

Figure 4.1: Use of (a) strong-sense and (b) weak-sense auxiliary functions for
function optimisation

A weak-sense auxiliary function for F(X) around X' is a smooth function G(\, \')
such that

0

=0 (4.2)

9 )

A=N

The idea is shown in Figure 4.1(b). The gradients of the two functions are the
same around the point A = ). Maximising the function G(A, \') w.r.t. A does
not now guarantee an increase in F(\). However if there is no change in A after
maximisation on a particular iteration, this implies that we have reached a local
maximum of F(A) (the gradient is zero at that point). If the update converges
it will be to a local maximum of F ().

The weak-sense auxiliary function condition of Equation (4.2) can be considered
a minimum condition for an auxiliary function used for optimisation. In addition
the function should be chosen so as to ensure good convergence. Weak-sense aux-
iliary functions are not bound to be convex as in Figure 4.1(b), but an auxiliary
function which is not convex is less likely to lead to good convergence.

Weak-sense auxiliary functions are useful when optimising functions containing
some terms that can be optimised by strong-sense auxiliary functions but others
that cannot. Weak-sense auxiliary functions make it possible to modify proce-
dures based on strong-sense auxiliary functions (e.g. Expectation-Maximisation)
rather than switching to entirely different techniques based on gradient descent.

4.2.1 Smoothing functions

A useful extra definition is that a smoothing function around X' is a smooth
function of A, G(A, '), such that

GAX) <G, X) (4.3)
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for all A\. It has its maximum at the initial point A" and thus if a smoothing
function around X' is added to an objective function, the resulting function is a
strong-sense auxiliary function for that objective function around X'

A smoothing function can be added to a weak-sense auxiliary function to improve
convergence without affecting the local gradient.

4.2.2 Examples of strong-sense and weak-sense auxiliary
functions

Strong-sense auxiliary function

The classic example of what is here called a strong-sense auxiliary function, is
the one used in HMM estimation. This is covered in Section 4.2.3. This section
deals with a simple but interesting example. Suppose we have a function f(z)
which is a sum of cosine wave components with known fixed amplitudes K,,,

f(z) = Z K, cos(2mnz), (4.4)

n=1

and suppose that starting from some initial value of  we need to find a local
maximum in the function. Strong-sense auxiliary functions provide an easy iter-
ative solution to this problem that is guaranteed to converge. The aim of using
strong-sense auxiliary functions is to turn the function into a simpler form whose
maximum can be found analytically. There is an additive property in auxiliary
functions which means each of the N terms in f(z) can be tackled separately.

It is easy to find a strong-sense auxiliary function for each individual term
K, cos(2mnz). The approach will be to use strong-sense auxiliary function of
the form g(z) = A,z + Bpz®. The idea is shown in Figure 4.2. Suppose the
current value of z is a’. Let us define y as the difference x — ' and use the more
convenient shifted form g(y) = A,y + Bny? for the auxiliary function. The gra-
dient of this around the point x = 2’ (y = 0) equals A,,, and auxiliary functions
always have the same gradient as the objective function around the local point,
SO

0
= 2K, cos(2
A, 92 n cos(2mnx)

= —2mnK,sin(2rnz’).

z=z'

The second differential of the auxiliary function w.r.t. z is a constant equal to
2B,,. If this is set to less than or equal to the lowest ever value of the sec-
ond differential w.r.t. z of the function K, cos(2mnz), the two functions will
never cross and the inequality of Equation (4.1) will hold. This can be visu-
alised by looking at Figure 4.2. The second differential of the cosine function
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is —(2mn)?K, cos(2rnz), and the minimum value of this is —(27n)?|K,|, so an
acceptable value for B, is:

B, = —0.5(2mn)* K,|. (4.5)

Figure 4.2 shows the auxiliary function A,y + B,y? (where y = x — z') for an
example sine wave. The auxiliary function has been shifted up for clarity and the
current value ' = 1.2 is marked. Note that for some positions on the cosine wave
it would be possible to set B to a value much closer to zero and A, y+ B,y? would
still be a strong-sense auxiliary function for the cosine wave around z’. This would
lead to faster convergence towards a local maximum of f(z) but would increase
the complexity of the update equation so the option has not been pursued. It
would also be technically possible to set B to a very large negative constant value,
but this would lead to the optimisation having very slow convergence.

Summing the values of A,, and B,, over the values of n to get an auxiliary function
for the full objective function of Equation (4.4), and using the fact that the
maximum of the auxiliary function occurs at at z = 2z’ — % for an auxiliary
function of this form, the updated value of zx is:

. N —omnK, sin(2mna’)

=272 — =22 (4.6)
SN —0.5(27n)?2 K|

where the numerator of the fraction equals ZnN:1 A,, and the denominator equals
25:1 A, assuming that the frequencies range from 1 to N. This should be
applied iteratively, setting z’ to the new value of x each time. For an example,
suppose that N = 5, K,, are 3,—3,3,—1 and 2 respectively and the starting
point is ' = 0.6. Figure 4.3 shows the objective function and the points visited
by the optimisation (only three separate points are visible). The value of = has
converged to within 5 decimal places after 5 iterations.

Weak-sense auxiliary function

Suppose there is a need to maximise a function of the form

fz) = filz) + (f2(2))?, (4.7)

where fi(z) and fo(z) are sums of cosines as in Equation (4.4), with N cosine
components and amplitudes J,, and K,, respectively for n = 1...N. In fact, the
above approach using strong-sense auxiliary functions is applicable to this case
because the term (f2(x))? can be expanded into a sum of cosines. But a different
technique will be used in order to show the principle of weak-sense auxiliary
functions.

Let the current value of x be z'. The following function of the variable z,

9(x) = fi(z) + 2fa(2) fo(2'), (4.8)
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Figure 4.2: Strong-sense auxiliary function for a cosine wave

is a weak-sense auxiliary function for f(z) around the point x = ', because the
differential w.r.t z where x = 2’ equals %ﬁ””z:w: + 2%9(:””17:,3:]”2(1:’) for both the
objective function and the auxiliary function. But this g(z) is not an auxiliary
function that can be optimised directly because it still contains cosines.

Strong-sense auxiliary functions as in Section 4.2.2 can be derived for the two
terms in g(x), the sum of which will be a strong-sense auxiliary function, say
h(z), for g(x). Since h(z) is a strong-sense auxiliary function for g(z) around z’
and g(x) is a weak-sense auxiliary function for f(z) around z', h(x) is a weak-
sense auxiliary function for f(z) around z'.

The first term in g(z) is a sum of cosines with coefficients J,, and the second a sum
of cosines with coefficients 2fs(2')K,. Applying the same techniques described
in Section 4.2.2, strong-sense auxiliary functions can be derived for each of the
two terms in g(z). The sum of these two auxiliary functions will be called h(z),
and again using the shorthand y = z — 2/, it is of the form Ay + By?, where
A =N 9mn(J, + fo(2")K,)sin(2mnz') and B = YN | —0.5(2mn)%(|J,| +
2f2(z')K,|). The maximum of h(y) is —4; expressed in terms of z, the maximum
is where £ = 2’ — %, and this gives the update rule

=g — Zf@vﬂ —2mn(J, + f2(2") K,) sin(2mnz’)

= . (4.9)
> n=1 —0.52mn)*(|Jn] + |2f2(2") Kal)

Figure 4.4 shows the performance of the chosen weak-sense auxiliary function in
maximising the objective function, using as an example N =5, J, = 3,—3,3, —1, 2,
K, =1,-1,2,0.5,—0.5. Optimisation is started separately from a range of start-
ing points (circles) and run for ten iterations from each point (crosses). As can
be seen, the optimisation leads to a local maximum in all cases.
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_10 - -

Figure 4.3: Strong-sense auxiliary function optimisation for a sum of cosines

It should be emphasised that weak-sense auxiliary functions have to be con-
structed with the help of some intuition about what is likely to be effective.
Even a linear function of the parameters can be a valid weak-sense auxiliary
function, but it would not give a useful update. An auxiliary function should be
convex if it is to lead to finite updates. It should be clear from Figure 4.2 how
essential it is that that auxiliary function have an appropriate second differential
w.r.t. any parameter. A too-negative second differential will lead to very small
updates; a second differential too close to zero will lead to very large changes in
parameters which can cause the parameter values to diverge.

4.2.3 Strong-sense auxiliary functions for ML estimation

An HMM likelihood p(O|M, A) is a sum over state sequences »  p(O|M, A, z)
where the x are different possible sequences of HMM states. If the objective
function F(\) to be maximised equals the log likelihood, log p(O| M, A), it can
be written in general terms as follows:

FA) =1log > fo(N), (4.10)
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Figure 4.4: Weak-sense auxiliary function maximising a more complex function

where the z correspond to state sequences and f,()) are state-conditional like-
lihoods p(O|M, A, z). If the optimisation is started at A = )\, a strong-sense
auxiliary function for F()) is

ZZ fy X 10g fo(A). (4.11)

The inequality G(A, ') — G(N, ') < F(A) — F(XN) (Eq. (4.1)) can be shown to
hold for the F(\) and G(A, X') of Equations (4.10) and (4.11); it reduces to an

equation involving the Kullback-Leibler distance!.

The auxiliary function of Equation (4.11) is a sum of state-sequence log likeli-

1 This inequality can be quite simply derived as follows: The function G()\, \’) can equiva-

lently be expressed as: (log >y fy(A )) +3, z:f”f(:?k) log > ,EA()/\)' The inequality of Equa-

tion (4.1) reduces to: ), E{I”]E:‘&, (log 5 f( ))\) log 5, } ()X)) < 0. This is of the form
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hoods log f,()), weighted by the initial posterior probability Ef m}:"g\,) of the state
sequence. It is more usefully expressed as a sum over the invli’didual Gaussians
in the system, separating the p.d.f’s for each Gaussian, rather than retaining
the sum over the very large number of state sequences. This can be done us-
ing: log fo(A\) = S, 108 G0,y + 10g N (0(t)|ttey, 02,), Where a;; are transition
probabilities and the state output probabilities are assumed (for simplicity) to
be unidimensional Gaussians; x; is the state active at time ¢ of state-sequence z.

If the sum over state sequence posterior probabilities Ef””j(rj&,) for all sequences
Yy

z that include state j at time ¢, is written as ;(¢), the auxiliary function is as
follows (ignoring transition values and assuming a single Gaussian per state):

J T

GALX) =D (8 log N (o(t) s, 03), (4.12)

=1 t=1

where p; and 012- are the updated mean and variance corresponding to the new

parameters A and o(t) the value of the speech data at time ¢. The speech data
o(t) is considered to be a scalar for simplicity; the same approach is applicable
in the usual multi-dimensional case.

The auxiliary function can equivalently be expressed by replacing the sum of log
Gaussian likelihood functions log N (...) with a single expression as follows:

J

GAX) = _%(vj log(2mo?) + 210 29; (20)MJ + %ua)
Jj=1 2
=Y Q(%,6;(0),6;(0%)|,07) (4.13)
j=1

where 6,;(O0) = 3.1, 7,(t)o(t) is the sum of data weighted by posterior probability,
0;(0?) is the same sum over squared data 8;(0) = Y1 ~;(t)o(t)* and ~; =
ST, 7,(t) is the occupancy of the state.

The function Q(...) is equivalent to a weighted product of Gaussian likelihoods,

1 S —2Xpu+tu?
Qt, X, S|u,0%) = ~3 (t log(2mo?) + g+ a ) . (4.14)
o
The maximum of the function Q(v;, 6;(0), 6;(0?)|u;, 07) occurs where p; = 0"7(?)
and a]? = my%oj(oy. Unless the HMM parameters are at a local maximum of

J
the likelihood function, this is guaranteed to lead to an increase in likelihood.

p(z) p(z)
> . p(x) —q(z) <0, 0or 0 <0, since p(x) and ¢(z) sum to one.

>, p(x) log 42} < 0; using z — 1 > logz, this is implied by >, p(@) (Q(z) - ) < 0, or
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Weights and transition probabilities

In the case of mixture-of-Gaussians HMMs with weights c¢;,, for Gaussians m =
1...M for each state j the Gaussian occupation probabilities must be stored
separately for each Gaussian, so for instance y; becomes 7;,, and the same applies
to the other statistics accumulated.

This affects the forward-backward algorithm used to gather statistics from each
training file, but as this is a standard technique it will not be discussed further.
The extra term that appears in the auxiliary function in the mixture-of-Gaussians
case is Z]‘.le 211\::1 7jm log cjm which relates to the optimisation of the weights

Cjm; the weights are subject to a sum-to-one constraint (3 0_
j) and the maximum of the auxiliary function is where c;,, = 21\/737’"17

m=1 Ijm
The part of the auxiliary function due to the transition values can be expressed
as Y7, Z‘j]:l tijaij, where t;; is defined as the occupation probability (summed
over time t) of state sequences x with a transition from state 7 at time ¢ — 1
to state j at time ¢. The solution for a row of transition matrix values (a;; for
some 1) is analogous to the solution for weights c;,, in a state, i.e. a;; = —Jt”t—

j=1Lij

Since transition values are analogous to weight values, they will not be treated
separately in the context of discriminative updates.

¢jm = 1 for each

4.2.4 Weak-sense auxiliary functions for MMI estimation

The MMI objective function is a difference of HMM log likelihoods, F()A) =
log p(O|M™™ )\) — log p(O| M )), where M™™® and M9 are HMMs cor-
responding to the correct transcription and all possible transcriptions, respec-
tively. Strong-sense auxiliary functions as for ML estimation, G™™(\, \’) and
Gden(X, X') can be derived separately for the two log-likelihoods log p(O|M™®)
and log p(O|M9m): the auxiliary functions differ only in the model topology
used to accumulate statistics from the training data. A difficulty arises because
the second term is negated in the MMI objective function; strong-sense auxil-
iary functions cannot be used when the problem is negated since the inequality
of Eq. (4.1) will no longer hold. However weak-sense auxiliary functions do not
suffer from this problem, and the difference G™™(X, \') — G¥®(\, X) is still a
weak-sense auxiliary function for the MMI objective function.

However, G™™(\, ') — G4(\, X) is not a suitable auxiliary function to use in
optimisation because it is concave for some Gaussian parameters (generally where
ﬁen > 'y;-‘“m). It is necessary to ensure that the auxiliary function is convex. To
do this we can add a smoothing function G (\, ') which can in principle be any
function with a zero differential w.r.t. A around the current value A = X'. This
will not affect the local differential and the result will be a still be a weak-sense

auxiliary function for the MMI objective function. This leads to the following
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auxiliary function:
G N) = Gmm (A N) = GE(A, X)) + (AN (4.15)
One possible form for GS™(\, X') is

J
G X) =D QD Did'y, D5 +0'7) s, 07, (4.16)

j=1
which has a zero differential w.r.t. the parameters 0]2 and p; evaluated at the old

values O'I? and y';, so the auxiliary function is still a weak-sense auxiliary function
for the objective function around A'. D; are positive smoothing constants for each
state j (or each Gaussian j, m in the mixture-of-Gaussians case). A larger value
of D; will slow down the optimisation of the Gaussian mean and variance.

The total auxiliary function (considering only terms involving Gaussian param-
eters) now becomes:

J
G X) =Y Q0™ 6(0), 65 (0%) |z, o5)

~ den pden den 2 2 (417)
_Q(”Yj 70j (0), 9 (O%)|uj o ])

+Q(Dj:Dj,u'lj:D(M + 0’ )|M]a ])

The above analysis can trivially be extended for Gaussian mixtures with Gaussian
components m = 1... M. Maximisation of the function in Eq. 4.17 leads to the
Extended Baum-Welch (EB) update equations as follows:

_ {#3n(0) - 82(0)} + Dyt

Hjm = num en (418)
! {7Jm ’Yfm } + Djm
enum 02 eden 02 + D. m 0. +

me (e — 23] + Dy "

This solution is trivial to derive because the three Q(...) functions can be com-
bined by adding together the three different arguments. In the implementation
used for work in this thesis, the Gaussian-specific smoothing constants D, are
set on a per-Gaussian level to the larger of i) twice the smallest value needed to
ensure positive variances, or ii) yde“ times a further constant E, which is generally
set to 1 or 2. This has been found experimentally to lead to good convergence
(see Section 5.3.5). The weak-sense auxiliary function is valid for any values of
Djm-

Equations (4.18) and (4.19) are the Extended Baum-Welch update equations as
given for instance in [Normandin & Morgera, 1991].
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Relation of EB to GPD

Generalised Probabilistic Descent (GPD) [Juang & Katagiri, 1992] is an opti-
misation method based on gradient descent, based on the Probability Descent
Theorem [Amari, 1967]. The parameters A are changed by ¢, UV, on each itera-
tion, where U is a positive definite matrix, V; is the differential of the objective
function w.r.t. A on iteration ¢, and ¢ is a time-dependent learning rate with
the property that > ;° e = o0 and ) ;o) € < 00: e.g., & = 1 has this property.
This guarantees convergence to a local maximum of the obJective function.

GPD is equivalent to a particular case of a weak—sense auxiliary function. If the

auxiliary function on iteration ¢ is ATV, + 5 ()\ X)TUH (A — X), the update
will be the same as for GPD with learmng rate ¢ = % This equivalence is
interesting because it suggests that the smoothing constants D;,, could be set to
values increasing on each iteration. The term % in the auxiliary function occurs
in front of a smoothing function (i.e. a function ‘With zero dlfferentlal around X').
It is known that GPD is guaranteed to converge when ¢; ;. This suggests that
setting the constants D;,, to values proportional to ¢ might lead to good results.

This possibility is explored experimentally in Section 8.14.

4.3 MAP updates

4.3.1 Incorporating priors into auxiliary functions

Any function is both a weak and strong-sense auxiliary function of itself around
any point. Therefore if we add a log prior distribution logp(\) to the MMI
objective function making

F(A) = log p(O|M™™) — log p(O| M) + log p(N), (4.20)
the extra term can simply be added to the auxiliary function leading to

G\ N) = G\, ) — GER (A X)) + G (A, X') + log p(A). (4.21)

4.3.2 Priors over Gaussian parameters

A convenient prior distribution over a mean u and variance o? is:

log p(pt, 0%) = k + Q(T, T fhprior, T(Togior + Hosior) |15 07), (4.22)

where Q(...), defined in Eq. 4.14, is equivalent to a log likelihood of 7 points of
data with mean ppior and variance opmr, and £ is a normalisation term which
can be ignored.



4.3. MAP UPDATES 35

For the mean, this prior is a Gaussian with variance "72, ie. % times the variance
of the distribution itself, as in conventional MAP [Gauvain & Lee, 1994]. For
the variance, defining S = (& — fiprior)? + Oy, matching the first and second-
order terms of the Taylor expansion around the value 02 = S shows that the
distribution over o2 is locally equivalent to a Gaussian distribution with mean S
and variance 2%2 The prior over the variance differs from the standard approach
to priors over variances [Gauvain & Lee, 1994], in that the mode of the variance
prior varies as a function of the updated mean. This formulation makes sense
if our intuition about the prior is that the Gaussian parameters ought to give a
high likelihood to data drawn from a particular distribution.

4.3.3 I-smoothing

The H-criterion (Section ??) uses a fixed interpolation between the MLE (H=0)
and MMI (H=1) objective functions.

I-smoothing is a proposed alternative technique which is similar in effect to the H-
criterion but uses a different interpolation constant for each Gaussian depending
on the amount of data available. I-smoothing can be regarded as the use of a
prior over the parameters of each Gaussian, with the prior being based on the
ML statistics. The log prior likelihood is equal to
num num 2
togp(im 72) = Q! A O B OD 2k (a2s)
"ij ’yjm

where k is a normalising term. This prior is proportional to the likelihood of 77
points of data with mean and variance equal to the numerator (correct model)
mean and variance, where 77 is a constant affecting the narrowness of the prior.
The prior likelihood can be integrated into the optimisation procedure by altering
the numerator statistics as follows before use in parameter update:

yum! = ymm ] (4.24)
num num ’yn;fllm + TI
Oim (0) = O (0)Foe— (4.25)
num I
num 2 _ num 2 ’ij +7
jm

which arises from combining the statistics of the Q(. .. ) function of Equation (4.23)
with the numerator statistics so that the numerator objective function now in-
corporates the prior. Typically 77 is set to around 100 for MMI training. This is
higher than the analogous constant 7 typically used in MAP training for speaker
adaptation, which might be set to around 10 or 20. This can be explained by ob-
serving that MMI-estimated parameters differ very little from the corresponding
ML parameters, so a narrow prior is called for.
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Section 8.2 gives experimental results showing the effect of I-smoothing on recog-
nition results for MMI and MPE training on a variety of corpora.

4.3.4 The H-criterion

The H-critierion [Gopalakrishnan et al., 1988], which is related to I-smoothing,
is an interpolation between the MMI and ML objective functions, so

f()\) = Zlogp)\ ((91"|31")'i P(sr)n - HlOg Zp)\ ((97"3)'i P(s)n' (427)

r=1

For H=1 this is equivalent to MMI (Equation (3.2)) and for H=0 it is equiva-
lent to the ML criterion. In experiments on the Switchboard database reported
in [Woodland & Povey, 2002], the H-criterion did not seem to reduce WER rel-
ative to MMI, although it may useful as a technique to make MMIE training
converge without over-training.

4.3.5 Dimension-specific I-smoothing

The constants 7 for I-smoothing of discriminatively trained systems have gener-
ally been set to a constant value based on trial and error, but the probabilistic
framework makes possible a more empirically motivated approach.

As mentioned in Section 4.3.2, the meaning of the 7 value in terms of the prior

2
. . . . [ .
distributions over the parameters is for the mean 7 = —- and for the variance

mean

T = 2%. These formulae can be used to motivate a way of setting dimension-

var

specific values of 7.

The modes of the prior distributions for means and variances in I-smoothing are
set to the ML-estimated parameters. It is not clear how to calculate the variances
of these distributions since the “perfect” discriminatively trained parameters (i.e.
with infinite training data) are unavailable so we cannot know how much these
tend to vary from the ML estimates. However, it is possible to calculate the
T values corresponding to the global distribution of parameters in the initial
HMM set, and scale these appropriately to get the narrower priors needed for
I-smoothing. USing fimean(d) and o2.,,(d) to denote the mean and variance of
the global distribution of means in the HMM set for dimension d, and fr(d)
and o2 (d) for the variances, the 7 values for each dimension can be calculated

var
Hvar

as mj‘a) and 2% for the mean and variance respectively. These values of 7

can vary from dimension to dimension between approximately 0.1 and 2 for the
means and 1 and 5 for the variance. Since narrower priors (larger values of 7) are
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needed for I-smoothing, the 7 values are calculated using the following heuristic:

Pvar(d)
Tmean(d) = Tmin —+ aig'?nean(d) (428)
I r(d)2
@) = 2O «2

where a < 1 is a scaling constant and 7,;, is @ minimum 7 value which prevents
too much variation in the values for different dimensions. Note that the formula
for 7 for the mean uses i, (d) as an approximate value for the individual variance
03, to make the values of 7yean(d) constant for each dimension. It has been found
empirically that if a value 7 was previously found to be appropriate, this can be
replaced with the formulae above using 7., = 0.57 and o = 0.4.

The values Tmean(d) and 7yar(d) control the widths of the prior distributions for
each dimension. The modes of the prior distributions can be supplied as usual
by the ML estimates. With different 7 values for the mean and variance it
is difficult to find an elegant form of prior which does not change the form of
the update equations. The approach taken was to update the mean and then
the variance, with the variance estimate depending on the mean estimate. This
can be expressed in terms of Q(...) functions if the mean is first estimated by
auxiliary functions of the form Q. .. |a;-m2, Mjm) With the old variance o7, used as
a fixed value for the variance; and the variance is then estimated using auxiliary
functions of the form Q(... |03, #jm) with the updated value of y;p, fixed and
only sz-m variable. The separation is necessary because of the different values of
7. The update equations used are given as follows:

B(0) = 652(0) + Dbt + e 050(O)

¥ jm

Wim = S ’ 4.30

in T A8+ Dy + T ) (4:30)
num den m Tvar(d) onum

Ujm = num den . (431)
Vim® — Vim T Dim + Tvar(d)

where SPu® = 970 () — 2055 (O) fjm + V" 13, i defined as the scaled variance
of the numerator statistics around the updated mean and Sf,‘;n is similarly defined,
and S5 = Djm (07, +145,,)- A more complete description of the derivation of these
formulae is not given since dimension-specific I-smoothing is not recommended
as a standard technique.

Experiments on the effect of dimension-specific 7 values in the context of MPE
training are given in Section 8.13. This approach gives a small improvement over
the baseline of a fixed 7 in most cases but has not been adopted as a standard
technique due to the increase in system complexity.
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4.4 Weights and transitions

This section derives a new update rule for weights and transitions. The up-
date rule is derived for the case of the weights; as observed in Section 4.2.3,
the Gaussian weight optimisation is exactly analogous to the optimisation of a
row of transition matrix values, so transition probabilities will not be considered
separately.

In Section 6.3 a more general version of this update rule is derived and experi-
mental results for different update rules including the previous Extended Baum-
Welch approach are compared in Section 6.4.3. This section explains the basic
approach to weight and transition probability optimisation used for most of the
work presented in this thesis.

Updated mixture weights c;, for a state j are calculated by maximising the
following auxiliary function:

M den
num Yim

GO X) = i log cim — ™ Cjm, (4.32)
m=1 jm

subject to the sum-to-one constraint; a similar method is used for each row of

the transition matrices. c,, are the weights from the previous HMM set.

This auxiliary function can be shown to be a weak-sense auxiliary function for the
MMI objective function as follows. Firstly, the function G™™ (X, X')—Gde* (X, \) is
a weak-sense auxiliary function for the MMI objective function, where G™™ (A, ')
and G4 (), \) are auxiliary functions of the kind used in ML estimation (see
Section 4.2.3). The terms in this including the weights of state j are:

M
D (e — y2em) log cjm. (4.33)
m=1

The auxiliary function of Equation (4.32) has the same differential as Equa-
tion (4.33) w.r.t. each cj, at the initial position where each cjn = c},,. Since
Equation (4.33) is a weak-sense auxiliary function for the MMI objective function
around X, so is Equation (4.32).

The auxiliary function of Equation (4.32) is optimised as follows. For all j, m set
c;(,),)l = C, (i.e. to the original values from before the optimisation) and then for

iterations p = 0 to, say, 100, set for all j, m:
1) _ "+ Ry

gm- num ’

(4.34)

where

/ /
m ij ij

den den
kjm = (max Tym ) _ Jim (4.35)
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The values of cgp% after 100 iterations are used for the updated values (convergence

can be slow enough to make 100 iterations necessary for some values of parameters
and statistics).

The proof that this formula will be effective is as follows. Suppose the current
iteration of optimisation is p, and for a particular state j a strong-sense auxiliary
function for the objective function? of Equation (4.32) is desired, which will help
us find values c(pJr ) that increase the objective function. The objective function
being opt1m1sed on iteration p is as follows:

p+1 Z num]og (P+1) ’YJ""‘ (P+1), (436)

/ Jm
C]m

which is a function of the unknowns c(p ) form=1...M. The “starting point”

for the optimisation is the values on the previous iteration, c(p Any function,
for instance the one in Equation (4.36), is a strong-sense auxﬂlary function of
itself. This property is unchanged by adding a smoothing function as defined in

Equation 4.3. The smoothing function we add in order to make Equation (4.36)

analytically tractable is Zfr/f:l m (c]m log c; (» +1) cg-’;: 1)), where k,, are positive
constants for each m. This function has its largest value at the “starting point”
where c(p ) = ;n)l, hence it is a valid smoothing function. The auxiliary function

now becomes

den
num Yim. +1) 41 +1
GNP+ \P)) ny],‘,‘l logc +1) _ c{- (p ) Lk, ( > logc; (p ) cg-fn ))
im
(4.37)
The k,, are chosen so as to make the coefficients of the linear terms in cgpn:r 2
in Equation (4.36) all have the same coefficient, so that due to the sum-to-one
constraint the linear terms reduce to a constant independent of the weights.

For optimisation which is as fast as possible, the coefficients k,, are chosen to
be the lowest values which will make the coefficients of the terms in c( ) all be
the same; the smallest of k,,, will always be zero. This leads to the expressmn in
Equation (4.35) for k.

den den
—7; 00
The coefficients of terms in c( Y become equal to —'™ — k,, = —max,, CJ,'" ,
Jm
(p+1)

which is a constant independent of m. The coefficients of terms in logc;,,

become equal to ;" + c(p) mkm, and the maximum of the function can be found
e.g. using Lagrang1an multlpliers; this leads to the update in Equation (4.34),
which is analogous to the normal Baum-Welch update for weights.

2Note that the “objective function” referred to here is actually an auxiliary function as far
as the MMI optimisation is concerned.
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4.4.1 Priors for weights and transitions

In some cases there may not be enough training data for discriminative training
of weight and transition values. In order to give good results in these cases, prior
information can be incorporated into the auxiliary function. In the case of the

. . . . . . . ,Ypum .
weights, for instance, the prior distribution used is ) TW#% log ¢jm which

has its maximum where the updated mixture weights c;, equal the Maximum
Likelihood solution for the weights. 7% is a constant which determines the width
of the prior over the weights. This is implemented by altering the weights as
follows:

W ~,num

/ num num T 7jm
v =Yim t=um (4.38)
Jm Jm Zm 7]71311

prior to updating the weights.

A similar approach is used for each row of the transition matrix, controlled by a
constant 77. Priors over weights and transitions make essentially no difference
to recognition results and so will not be discussed further. Experiments reported
here do not use weight and transition smoothing unless otherwise indicated. A
small value of 77 = 1 and 77 = 1 is recommended for robust discriminative train-
ing. Although it makes virtually no difference to test set results (Section 8.18), it
may help in cases where some transition matrices have very little data available
for training.

4.5 Previous work on Extended Baum-Welch up-
dates

This section discusses the original proof for the Extended Baum-Welch (EB)
equations, and explains how the proof given in this chapter differs from previous
approaches. Section 4.5.1 briefly explains the Baum-Welch update for ML train-
ing. Section 4.5.2 explains the basis of the EB equations as applied to discrete
HMMs. Section 4.5.3 discusses the continuous-density version of the EB equa-
tions. Section 4.5.3 discusses the smoothing constant D in the EB equations.
Section 4.5.4 discusses more recent approaches to justifying the EB update equa-
tions. Section 4.5.5 explains the advantages of weak-sense auxiliary functions for
proving the validity of the EB equations.

4.5.1 Baum-Welch update for ML training of discrete HMMs

The Baum-Eagon inequality [Baum et al., 1970] gives a way to iteratively max-
imise polynomials of variables where groups of the variables are subject to sum-
to-one constraints, and all polynomial coefficients are positive. This is exactly
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the case encountered in the optimisation of discrete-probability HMM output
likelihoods.

The Baum-Eagon inequality is formulated for the case where there are variables
z;; in a matrix X containing rows with a sum-to-one constraint Z]. zi; = 1, and
we are maximising a sum of polynomial terms in x;; with nonnegative coefficients.
The inequality is of the form given in Equation (4.1), making the auxiliary func-
tion what is here termed a strong-sense auxiliary function. The auxiliary function
is the same as that given in Equation (4.11), a weighted sum of logarithms. Find-
ing the maximum of the auxiliary function (e.g. using Lagrangian multipliers)
leads to the following update, which is a “growth transformation” for the poly-
nomial:

! OF
1] 3:1),']'

X=X' (4.39)

T = 1 OF
Zk xik 3%’19

X=X

where xgj are the previous parameters and z;; the updated parameters. A growth
transformation is a transformation of the parameters X which will increase the
objective function unless it is already at a local maximum.

The Baum-Welch update is an update procedure for HMMs which uses this
growth transformation together with an algorithm known as the “forward-backward”
algorithm for finding the relevant differentials efficiently.

4.5.2 Extended Baum-Welch for discriminative training
of discrete HMMs

An update rule as convenient and provably correct as the Baum-Welch update is
not available for discriminative training of HMMs, which is a harder optimisation
problem. Early work on discriminative training used gradient descent. Alterna-
tive update methods were sought and this resulted in the Extended Baum-Welch
equations (EB) [Gopalakrishnan et al., 1989].

The Extended Baum-Welch (EB) update equation as originally derived is appli-
cable to rational functions of parameters which are subject to sum-to-one con-
straints. (A rational function is a ratio of two polynomials). The MMI objective
function (for discrete-probability HMMs) is an example of such a function. The
two essential points used to derive the EB update for MMI are:
1. Instead of maximising f(X) = % for positive a(X) and b(X), we can
instead maximise g(X) = a(X) — kb(X) where k = a(X")/b(X’) and X'
are the values from the previous iteration; increasing g(X) will cause f(X)
to increase. This is because g(X) (when scaled by the constant ﬁ) is a
strong-sense auxiliary function for f(X) around X'.
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2. If some terms in the resulting polynomial are negative, we can add to the
expression a constant C' times a further polynomial which is constrained to
be a constant (e.g, C'[[;>_; zi;), so as to ensure that no product of terms
in the final expression has a negative coeflicient.

By applying these two ideas something of the form 28(()) , where a(X) and b(X)
are polynomials in z;;, can be massaged into a form suitable for the Baum-Welch

update, which only works for polynomials with nonnegative coefficients.
The Baum-Welch update, given in its canonical form in Equation (4.39), may
also be expressed as:

OF

dlog(z; ,
Tij = 8(zs) X=X . (440)

Zk 8log(z,k

X=X’

Here differentials are given with respect to the value of log z;;, (using ﬁﬂ,l]) =

Tijs— a ) this makes the equation simpler and makes the differentials correspond
dlrectly to Gaussian occupancies ;.
Equation (4.40) gives an update for polynomials with all positive coefficients (the

ML case); for the more general class of functions considered in EB, the application
of the two insights mentioned above leads to an update as follovvs.

: 3
P ‘91°g($”) oo % (4.41)
ij — ) .
>k alog i) | x—xt + Cujy,

where C is a smoothing constant; C must be set according to a formula that for
the case of HMM updates makes it far too large for practical use. In practice C
is set to the smallest value necessary to make all updated values x;; positive plus
a small constant e.

This approach is applicable to the optimisation of Gaussian mixture weights in
MMI training. This update for mixture weights c;5, for state j, becomes:

Cim = Wﬂ“ﬂ( oo+ Ceim (4.42)
T swge Fnn(A) =y + el '

Expressed in terms of occupation counts, the update is as follows:
Cim = 7;171711111 716173111 + Cclim

(4.43)

den _ ,num
7’”‘6#. Unfortunately C' is dominated by
jm

small-valued parameters and can become large, so training proceeds very slowly.

so C' would be set to € + max;,,
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When Normandin [Normandin & Morgera, 1991] did his work on MMI training
of continuous and discrete HMMs he found that for training discrete HMMs a
slightly altered form of the EB formulae gave better performance. This was based
on the idea in [Merialdo, 1988] of replacing the gradient 0F/0dz;; (which can be
very large for small-valued parameters) with a different formula, as follows. If
the numerator and denominator occupancies are Y™™ and v and the mixture
weights are c,,, he replaced:

OF _ i — v

/
0cjm Chm

(4.44)

with:

OF _ v
e Lom T Lt

(4.45)

where the differential % is required in Equation (4.42). This substitution within

the EB formula has since been used successfully (e.g, [Valtchev et al., 1996, Schluter, 2000]),
although it cannot be guaranteed to work and does not in practice increase the
criterion on every iteration, as Normandin noted. For this reason an alternative
approach to mixture weight and transition has been developed, as described in
Section 4.4 (See Section 6.4.3 for an experimental comparison between the two).

4.5.3 EB for Continuous Density HMMs

Normandin also extended the EB equations to the case of continuous density
HMMs

[Normandin & Morgera, 1991]. This was done by viewing a Gaussian as a way
of parametrising a discrete distribution. The resulting formulae for means and
variances are the EB update formulae of Equations (4.18) and (4.19). The proof
of the validity of the update rule [Normandin, 1991] was quite complex and was
only valid in the limit of a “discretisation” step size becoming zero, so the proof
is only valid for infinite D, as opposed to a finite but extremely large constant C'
for the discrete density case of the EB equations.

Setting the smoothing constant for continuous EB

Equations (4.18) and (4.19) contain a “smoothing constant” Dj,, which controls
the speed of optimisation for each Gaussian m of state j. The value of this
constant is critical. In the original presentation of the EB equations, D was set
on a global level to twice the value necessary to ensure all positive variances. In
earlier work carried out in Cambridge [Valtchev et al., 1996], D was set in the
same way but separately for each phone HMM, which led to faster optimisation.
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For work carried out in this thesis D is set on a per-Gaussian level, to the larger
of: (i) twice the value necessary for all positive variances, or (ii) a further constant
E multiplied by the denominator occupancy 7den. E=1 or E=2 is generally used.

Schluter [Schluter et al., 1997] suggested setting D for state j depending on a
constant h to:

1
D, = h -max { Dupin, =
= e { Do

where Dy, is the minimum value which guarantees all positive variances for state
j. Values of h such as 1.1 or 2 were used; h is roughly similar to the constant
E used here. Section 5.3.5 gives an experimental comparison of Schluter’s ap-
proach with that used here showing that Schluter’s approach is more effective in

optimising the criterion but the current approach is more effective in improving
WER.

In a few experiments reported here, E = halfmax indicates the approach of
setting E to half the maximum ratio of de,, in the whole HMM set if D had been

set according to the rule “twice the value necessary for positive variances in all
updated Gaussians”. In typical cases this resulted in a value of E which rose
during optimisation; for example, from about 2 to 6 during successive iterations;
this rule was felt desirable because in informal experiments on a variety of very
different systems including a tied-mixture system this formulation was found to
work well. However, a fixed value of E=1 or E=2 has generally been used since
it is simpler.

+ e — 7;‘“‘“} : (4.46)

4.5.4 Other approaches to justifying the EB equations

The discriminative versions of the EB update for Gaussians (Equations (4.18)

and (4.19)) are poorly justified because the original proof of their validity [Normandin, 1991]
only applied to the case of an infinite value of the smoothing constant D, whereas

a finite value of D is used in practice.

Some authors in search of a simpler justification for EB have shown that similar
equations can be derived in a gradient descent framework, as long as the step sizes
are chosen appropriately [Schluter et al., 1997, Zheng et al., 2001]. Of course,
this entails giving up any claim to be a so-called “growth transformation”, i.e.
an update rule which is guaranteed to increase the objective function if it is not
already at a local maximum.

More recently, a novel proof of the EB equations has been proposed [Gunawardana, 2001].
The work is interesting in that it leads to a derivation of both the EB update
equations and an update for discriminative MLLR. However, I do not believe it
successfully demonstrates a way to set the smoothing constant Dj,, to a finite
value and still guarantee convergence. Indeed, I believe it is impossible to prove
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convergence for finite D without accumulating extra statistics (e.g., about the
maximum length of training files) because for any finite change in the HMM pa-
rameters, there can potentially be an unbounded increase in the likelihood of a
path in the denominator HMM.

Difficulty of proving convergence under finite D

The difficulty of proving convergence for any finite value of D arises from the
problem that very small changes in Gaussian parameters can in principle cause
very large increases in the likelihood of currently unlikely paths appearing in the
denominator HMM. Large increases in the likelihood of denominator paths are
not reflected in the auxiliary function, which varies linearly with the log likelihood
of such paths. There is no way to put a limit on the increase in likelihood of these
unlikely paths unless the maximum range of the data values o(t) is known and
the maximum length of the training files is known. These can be used to get a
crude limit on the maximum increase in likelihood of unlikely paths. For instance
(considering one dimension), if the minimum and maximum values of o(t) are a
and b and the maximum training file length is 7', consider a change in a Gaussian
mean /. If this is increasing by a small amount €, the maximum possible change
in log likelihood of that Gaussian is eb 7™ (assuming p is further from b than a).

Let us suppose that a file of length T cons1sts of data values just consisting of
the maximum value b, and a wrong path allowed by the language model consists
almost entirely of probabilities contributed by the Gaussian m of state _7 This
could cause a maximum increase in the log likelihood of a path equal to (T o tim.

im
The difficulty for optimisation arises from the fact that if this increase €7 a“ I is
large (more, than, say, 1 or 2) and the posterior probability of the wrong path is
initially much less than 1, the increase in log likelihood of the denominator model
is not well reflected in the auxiliary function, which is a weighted sum of logs.
For any given amount of smoothing function applied (controlled by E) there will
be a point where the increase T2 tim “ I in log likelihood of the path becomes large

enough that the real objective functlon value decreases more than the auxiliary
function (the exact amount will not be worked out here). This is a case of an
exp(x) function (the real objective function) becoming larger than an z? term
(the auxiliary function). It is necessary to limit this change to the range where
the difference between an exponential and an z2 term is not too large: say, less

than 1. In this case the change ¢ might have to be limited to, T”‘+f'"’ which
assuming b — fjm = 50jm, might give e < 2 <7, or —T standard deviations, which

obviously becomes very small as 7" becomes large.
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4.5.5 Advantages of weak-sense auxiliary functions for de-
riving update equations

The main advantage of weak-sense auxiliary functions for deriving discriminative
update rules such as the EB equation is that they are simple and flexible. A good
example of this flexibility is that the derivation given in this chapter for Gaussian
updates can easily be extended to the full-covariance case. The Q(...) functions
can easily be extended to full covariance matrices; the smoothing function used
to ensure convexity can be based on the mean and covariance of the previous
Gaussian parameters, and will obviously have zero differential w.r.t. the Gaus-
sian parameters around the old parameter values. The whole objective function
has a similar functional form to the ML objective function for full variance up-
dates, and can be solved in a similar way. This approach works well in practice
(see Section 8.17), giving better test set results after discriminative training than
diagonal-variance systems, as long as the ML and discriminatively trained esti-
mates of the off-diagonal variance elements were suitably smoothed to prevent
non-robust estimates. (Large values of 7! were necessary to smooth the variance
updates with ML estimates, the off-diagonal elements of which were themselves
smoothed).

It would not have been possible to extend the original proof of the EB update
equations for Gaussians [Normandin, 1991] in the same way, and if the EB equa-
tions were viewed as gradient descent [Schluter et al., 1997, Zheng et al., 2001]
and the extension done on that basis, questions would have remained regarding
the appropriate learning rates for the off-diagonal elements.



Chapter 5

Lattice-based M MI

One of the significant new pieces of work presented in this thesis is a frame-
work for lattice-based MMI training which is effective in improving word error
rates in Large Vocabulary Continuous Speech Recognition (LVCSR). This chapter
explains the framework for lattice-based MMI training, and gives experimental
results investigating some of the details of the training procedure.

Section 5.1 discusses the need for lattices in MMI training and the lattice format
used. Section 5.2 discusses the two different ways in which probability scaling
can be integrated into the lattice forward-backward algorithm. Section 5.3 gives
experimental results investigating various aspects of the MMI training procedure.
Section 5.4 summarises the chapter.

5.1 Use of lattices

5.1.1 Need for lattices

The MMI objective function can be expressed as a difference of HMM likelihoods.
For R training files, this can be written

R
Fanar(A) =Y log p§ (O, | M™) — log p§ (O| M), (5.1)

r=1

where M is the HMM corresponding to the correct transcription of utter-
ance r and M3" is the HMM corresponding to all possible transcriptions of the
utterance. Probability calculations are carried out with likelihoods scaled by &.

In order to speed up computation, the generic model M3 can be represented
by a model containing only those word sequences that have a reasonably high
likelihood for the utterance. A set of possible word-sequences could in principle
be represented by an N-best list (a list of the N most likely sentences), but

47
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HTK lattice format

The HTK lattice format consists of nodes representing the starts and end times
of words, with arcs representing words connecting the nodes. The lattice format
supports:

e Word start and end times.

e Word name and identity of pronunciation variant.

e Acoustic scores of words.

e Language model scores.

e Times of phone boundaries within words, and phones (with context).

Lattices often contain repeated arcs for the same word, to encode slightly different

start and end times or previous and following phone contexts.

Figure 5.1: HTK lattice format

a much more efficient way to represent the word sequence is a lattice. This
stores the alternate word sequences in the form of a graph in which the arcs
correspond to words; word sequences are encoded by the paths through the graph.
The information contained in the lattices used in HTK is detailed in Figure 5.1.
One advantage of using lattices is that the same lattice can be used for each
iteration of MMI training (and for multiple different MMI experiments, e.g. using
different training setups). This separates the most time-consuming aspect of MMI
training, which is finding the most likely word sequences, and makes it necessary
to only do it once; this approach assumes that the initially generated lattice
covers all the word sequences that will have a high probability even given the
models generated during later iterations of training.

5.1.2 Previous use of lattices

Early work on speeding up computation for MMIE included the use of N-best
lists [Chow, 1990] which are calculated once by a speech recognizer and then used
to approximate the set of all sentences in the denominator of the MMI objective
function. However, this becomes inefficient for very long sentences since the N-
best list is a redundant way of storing the information. In [Normandin et al., 1994],
lattices compactly encoding alternative hypotheses were generated in a format
called a “looped lattice model” and used in MMI training on a 2000-word task.

In [Valtchev et al., 1996, Valtchev et al., 1997], MMI training was performed us-
ing lattices generated by the HTK large vocabulary recognition system (Fig-
ure 5.1) [Woodland et al., 1995]. Lattices were generated once and then used for
multiple iterations of MMIE training.
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5.1.3 Issues relating to use of lattices

In this thesis, the lattice format of the HTK system is used (Figure 5.1). Lattices
compactly encode the sequence and alignment of words and phones, for a set of
alternative sentences. Lattices are generated to correspond to both numerator
(correct-model) and denominator (recognition-model) HMMs. Some questions
relating to MMI training in a lattice context include:

e What scale k to apply to the likelihoods and at what stage to apply it
(Gaussians vs. states vs. whole sentences or phones).

e What kind of language model (e.g, unigram, bigram or trigram) to use on
the lattices (and what language model and pruning thresholds to use during
lattice generation).

e What size of lattice is necessary for good results?

e Is it helpful to regenerate lattices more than once during the training pro-
cess?

These issues will be investigated experimentally in Section 5.3.

5.2 Scaling of likelihoods in lattices

A problem that arises in MMI training is that the likelihood of the data tends
to be dominated by one of the sentences in the lattice, and this can lead to
training that is not as smooth or robust as would be ideal. The solution to this
problem is to introduce the scale x on acoustic and language-model log likelihoods
that appear in the MMI objective function (Equation (3.2)), to make less likely
sentences more important. It has been found [Woodland & Povey, 2000] that for
good results with MMI it is important to scale down acoustic and language model
log likelihoods in this way.

During the MMI training process, this scaling by x is applied in the forward-
backward algorithm which calculates occupation probabilties for HMM states
during the E-M process. The lattices represent HMMs, so the forward-backward
process is in principle identical to normal HMM training.

There are different ways to perform this scaling by «, during the forward-backward
algorithm, and two particular ways have been tried here.
5.2.1 Exact-match forward-backward computation

In the ezact-match technique, the word and phone boundaries obtained from the
lattice are used during forward-backward computation and paths are not allowed
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except with those boundaries. A full forward-backward computation for each
phone, within the given phone boundaries, is done with unscaled probabilities.
Scaling of acoustic likelihoods is performed by scaling the whole-phone acous-
tic likelihoods obtained from forward-backward alignment and using these in a
phone-level forward-backward algorithm to compute phone occupation probabil-
ities, which are then combined with the within-phone occupation probabilities
obtained previously to give state occupation probabilties.

Detail of exact-match algorithm

A more precise description of the exact-match computation is as follows. Let us
denote a phone arc within the lattice as ¢. Each phone arc has a known start and
end time s, and e,. Forward-backward computation within a single arc gives us
within-arc occupation probabilities for each Gaussian m of state j, which we can
denote 5 (t) in the numerator case. These occupation probabilities would sum
to 1 for each time ¢ between the start and end times of the arc q. The forward-
backward algorithm also generates an arc-likelihood p(q) from the beginning to
the end of the arc, which is given by the within-arc “forward” probability at the

end state of the phone HMM at the end time e,.

These arc likelihoods p(g) are used in a forward-backward pass at the lattice-node
level to estimate the arc posterior probability, v, (i.e. the probability of traversing
that arc). The o (forward) and § (backward) likelihoods in the forward-backward
algorithm, and the occupation probabilities 74, would be calculated as follows:

a = 1,8p=1 (5.2)

ag = p(@" ). ot (5.3)

r preceding ¢

By = D, plr)Bit (5.4)
r following ¢
Yo = 0y (5.5)

where the notation ) following g 1€ans arcs r that follow arc ¢ in the lattice
structure; the transition probability between arc ¢ and arc r is 4.

If this is done for the numerator lattice structure giving occupation probabilities

fygum and for the denominator lattice structure giving occupation probabilities
Vg, the statistics needed for the EB formulae can then be gathered according
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to the formulae given as follows, which use the numerator case as an example:

Y = ZZ% pum (5.6)

g=1 t=s4

Oim (O0) = ZZVS}% T O(t) (5.7)
g=1 t=s4

mROY) = 3 Y RO (5.8)
q=1 t=s4

where s, and e, are the start and end times of arc q.

The exact-match forward-backward procedure can be further optimised by ex-
ploiting the fact that a particular model with a particular start and end times
often appears in parallel many times in the lattice. The within-arc probabilities
Yqim and the likelihoods p(g) from the beginning to the end of the arc ¢ will be
the same for such repeated models and can be calculated just once, and a similar
optimisation can be used to speed up the summation of Equations (5.6) to (5.8).

The exact-match forward-backward procedure roughly corresponds to an MMI
criterion where the scale k is applied to each sentence, as in Equation (3.2),
repeated here:

pA (O[s,)" P(s,)"
© 3. oA (O]s)" P(s)"

which is the formulation of the MMI criterion given in [Schluter & Macherey, 1998].
The correspondence with the exact-match forward-backward procedure would
only be exact as long as the sentences s in the summation corresponded to in-
dividual pronunciations and alignments of the sentences, and if the numerator
model were a summation over scaled probabilities of individual pronunciations
and alignments of the correct sentence— rather than the scale being applied after
the likelihoods of the individual pronunciations being added. The standard aux-
iliary function for MMI (G(A, ') of Equation (4.17)) would then be an auxiliary
function for the scaled objective function of Equation (5.9), ignoring a constant
factor k which arises from differentiating the scaled log likelihood.

5.2.2 Full-search forward-backward computation

The previously described exact-match alignment procedure is the one used in all
experiments unless otherwise stated. Full-search scaling is a different technique,
in which a full forward-backward alignment is performed on the lattice, and the
lattice times (extended by a margin at the beginning and end of each model) are
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used to prune away some likelihood computations and speed up the procedure.
Scaling is applied to the state output likelihoods, and the transition likelihoods
are not scaled'. Phone arcs are merged in all cases where the merging cannot
affect the total likelihood of the lattice, i.e, where two instances of a single phone
HMM attach at either their beginning or end to the same phone instance.

Note that as the scale k becomes large the full-search and exact-match techniques
become equivalent, as long as the most likely path is included in the recognition
lattice.

A more complete description of full-search scaling is not given here since exper-
iments (Section 5.3.4) show that compared to exact-match, full-search scaling
yields poorer or similar recognition results, and requires more computation time.
Full-search scaling gives particularly poor results when it is computed as exactly
as possible, i.e. without using the phone start and end times to limit the align-
ment of states.

5.3 Experiments on lattice-based MMI

Experiments reported in this chapter investigate various aspects of the use of
lattices for MMI training. For a comparison of MMI, I-smoothed MMI and MPE
training under a wider variety of conditions, see Chapter 7.

5.3.1 Experimental setup

Experiments on lattice-based MMI are performed on the Switchboard, North
American Business News (NAB, also known as Wall Street Journal), and Broad-
cast News (BN) corpora. Experiments on Switchboard use sets of training data
of size 265 hours (h5train00), 68 hours (h5train00sub) and 18 hours (minitrain).
Broadcast News training was with a 72 hour subset of training data and NAB
training used the 66 hours of channel 1 (close-talking microphone) training data.

Experiments use gender independent, mixture-of-Gaussian HMMs with cross-
word state-clustered triphones. The input data is Mel-Frequency Perceptual Lin-
ear Prediction (MF-PLP) coefficients, with delta and delta-delta coefficients, 39
dimensions in all.

There are about 6000 states per HMM set, with 12 Gaussians per state for NAB,
BN and the 68-hour subset of Switchboard, h5train00sub, and 16 Gaussians per
state for the 265-hour hb5train00 training set on Switchboard. These are the
typical sizes of HMM set as used in Cambridge for experiments with ML training
with these corpora at the time these experiments were performed.

!Experiments with a small database seem to show that not scaling the transitions is impor-
tant; thanks to K.K. Chin for this information.
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Recognition results are produced by rescoring lattices derived from ML-trained
HMMs, using a trigram language model. This is faster than unconstrained recog-
nition.

See Appendix A for a more complete description of the experimental setup.

5.3.2 Statistical significance

In this section, statistically significant intervals for WER are calculated for some
typical experiments. Since these intervals fall within a fairly narrow range, these
can be used as a guide to the significance of other experiments. The methods used
for testing significance here are quite simple but do take into account the fact that
the errors of different recognisers are correlated [Gillick, L., and Cox, S.J.]. A
recent paper on significance testing is [Strik et al., 2000]; the published methods
of comparing WERs tend to be very complicated and have not been used here
since they tend to involve laborious pairwise comparisons of results. Instead, the
ranges in which the statistical significance intervals fall have been calculated for
each test set.

Suppose some variation in the training process leads to a transcription that dif-
fers by K words from the baseline transcript. These K words can be viewed
as the outcome of a random process in which there are a number of locations
in the transcription that are liable (with some probability) to change when the
variation is made. If each of the locations will change with probability p, the
variance associated with each location is p — p? (in the sense that this is the vari-
ance of the distribution of the number of changes). Let us assume for simplicity
that the observed number of changes K exactly equals the expected number of
changes, so there are K /p of these sites, the variance in the number of changes is
K(p—p?)/p = K(1—p) (this assumption makes no substantial difference for any
reasonable values of K, e.g. K > 10). Assuming all changes in the transcription
lead to a change in the number of word errors, the variance in the number of
word errors will also be K (1 —p). Although not all changes in the transcript lead
to a change in WER (since they might lead to replacements of one substitution
for another, for example) it is simplest to assume that they do, and this will lead
to a slightly more conservative estimate of significance. The expression K (1 — p)
is largest when p is small, which is the easiest assumption to make as there is
no way of directly measuring p. If there are N words in the reference transcript,
the variance in the WER (if the WER is expressed as a proportion of 1 rather
than a percentage) will therefore be K/N?, and the standard deviation in WER
is VK /N.

Since it will generally not be clear in advance whether a particular change in a
program will increase or decrease the error rate, a two-tailed significance test is
appropriate. A 95% significance test rejects the null hypothesis (no change in the
variable) when the variable is outside the central 95% of the distribution, which
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for a Gaussian means more than about 2 standard deviations either way. What
this means in percentage WER terms for a result to be significant is indicated
for each test set in Table 5.1 for two systems: a typical system with a “big
change” (discriminative training vs. MLE) which means large K; and a typical
system with a “small change”, i.e. some relatively minor change in training setup.
This will allow the reader to gauge the significance of results. Since the level of
significance only changes with square root of the difference K, the change in
WER that is significant does not vary much across different experiments, for a
given test set.

Very different systems (ML vs. MMI)
Corpus Test set # ref words | % difference start-end | 95% sig interval
(N) (100K /N) (100 - 2v'K/N)
Swbd eval98 41178 34% 0.57%
Swhd eval97sub 11607 34% 1.08%
BN bneval96 23152 14.6% 0.5%
WSJ | csrnabl_{dev,eval} 15231 3.7% 0.31%
Similar systems (MMI, E=1 vs. E=2)
Corpus Test set # ref words | % difference start-end | 95% sig interval
(N) (100K/N) (100 - 2v/K/N)
Swhd eval98 41178 15% 0.38%
Swhd eval97sub 11607 15% 0.71%
BN bneval96 23152 8.6% 0.39%
WSJ | csrnabl_{dev,eval} 15231 2.5% 0.26%

Table 5.1: Significant intervals in WER, for example systems.

5.3.3 Default values and settings

In order to describe experimental setups as briefly as possible. some settings and
parameters are only specified if they differ from a default. Default settings are
as follows:

1. Full-search vs. Exact-match alignment: Exact-match is default.

2. Update equations: EB update with smoothing constant £ = 2.0 unless
stated otherwise.

3. Language model applied to lattices: unigram, with the same scale and
insertion penalty as for recognition.

4. Probability scale factor x: the inverse of the normal language model scale
(so 1/12 for Switchboard, 1/15 for NAB and 1/14 for BN).
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5. Lattices used: lattices are generated from recognition with a bigram lan-
guage model, subsequent to which unigram language model probabilities are
applied to the lattices. See Appendix A for a more complete description of
how the lattices were created.

5.3.4 Full-search vs. Exact-match

Iteration
0 1 2 3 4
%WER on eval97sub
Exact-match, E=1 46.0 43.8 44.1 439 443
Full-search, E=1, +£0.05s | 46.0 44.2 44.4 44.7 44.6
Full-search, F=1, +1.5s | 46.0 44.0 44.3 444 449
Exact-match, E=2 46.0 44.5 43.7 439 438
Full-search, E=2, £0.05s | 46.0 44.8 44.3 44.0 44.1
Full-search, E=2, +£1.5s | 46.0 44.0 44.3 444 449

Table 5.2: Full-search vs. Exact-match training on Switchboard, trained on
h5train00sub (65h), + latitude for full-search.

Table 5.2 compares the Full-search and Exact-match alignment procedures. It
can be seen that the Exact-match procedure gives better recognition performance.
In addition, the full-search method is slower: it takes twice long as exact-match
(for £0.05s pruning) or fifteen times as long (for £1.5s pruning). These pruning
beams refer to the amount of extension of the HMM time boundaries from the
phone-marked lattice. Experiments on the full 265h h5train00Osub training set for
Switchboard (not shown) also supported the notion that exact-match alignment
gives test-set results of the order of 0.5% absolute better than full-search.

5.3.5 Alternative approaches to setting Dj,,

As mentioned in Section 4.5.3, the Gaussian-specific smoothing constant Dy, is
set to the larger of: (i) twice the value necessary for all positive variances, or (ii) a

further constant E multiplied by the denominator occupancy fy;-i;;n. The approach

used in [Schluter et al., 1997] was to set Dj,, = h-max {Dmin, % + yden — ’y;‘“m} ,
for h typically set to values such as 1.1 or 2.

Table 5.3 compares Schluter’s approach, controlled by A and , with the approach
described here using both E=0.5 and E=2 as baselines. E=0.5 is more similar
in terms of optimising the criterion. The table shows that while Schluter’s ap-
proach is more effective in optimising the MMI criterion, the current approach
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Training Iteration

0 1 2 3 4
Average %YWER on csrnabl_{dev,eval}
12-mix, £=0.5 9.57 9.24 9.07 9.05 9.08
12-mix, F=2 9.57 9.48 9.31 9.26 9.27
12-mix, h=2, ; =5 | 9.57 9.99 9.91 10.16  10.87
MMI criterion / # frames
12-mix, £=0.5 -0.0128 -0.0083 -0.0061 -0.0048
12-mix, E=2 -0.0128 -0.0111 -0.0099 -0.0089
12-mix, h=2, % =51-0.0128 -0.0063 -0.0042 -0.0033

Table 5.3: Different ways of setting D,

gives better test-set approach— in fact, with these settings Schluter’s approach
gives a degradation in results. This shows the importance of taking error rate
into account rather than criterion optimisation when designing the optimisation
technique. The problem may be that in about half of all cases the quantity
% + yden — v;"™ will be zero or negative, so the smoothing constant Dj, is set to
hD;, instead, i.e. twice the minimum quantity necessary to make all updated
variances positive. Roughly speaking, this ensures that on each iteration at least
one variance in about half of all Gaussians, is moved about half-way towards
becoming zero; i.e. is halved. Such a large movement in parameter values on
each iteration must prevent a smooth approaach to equilibrium parameter values

and introduces considerable randomness into the likelihoods used in recognition.

5.3.6 Setting the constant ¥ and number of iterations

The EBW update is controlled by a smoothing constant £ which controls the
speed of optimisation; larger £ means slower training.

Tables 5.4, 5.5 and 5.6 and 5.7 show the effect of setting E to various different
values on the three corpora. Considering firstly the difference between E=1
and E=2, the faster update (EF=1) works better than F=2 on NAB and BN
but the slower update (E=2) works better on the 68h Switchboard task. Noe
of these results are significant; see the lower part of Table 5.1 for the relevant
intervals. No firm overall conclusion can be drawn regarding which of these two
values gives better results; however, further experiments finding that the faster
update works better under a variety of conditions for NAB can be seen later in
Table 5.13. Although these results are not significant, they are consistent with
the idea that nthat more smoothing (higher E) is needed on the more confusable
tasks (Switchboard and BN). This is not surprising when one considers the way
the update equations work: any non-confusable data in the training set acts to
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Training Iteration
0 1 2 3 4
%WER on eval97sub

E=1 46.0 43.8 441 43.9 443
E=2 46.0 44.5 43.7 43.9 438
E=halfmax (1.9...4.2) | 46.0 444 437 440 436

MMI criterion / # frames
E=1 -0.054 -0.041 -0.034 -0.028
E=2 -0.054 -0.046 -0.041 -0.036
E=halfmax -0.054 -0.046 -0.040 -0.037

Table 5.4: Varying E for exact-match training on Switchboard (68h train), 12
Gauss/state.

slow down optimisation by increasing the Gaussian-specific value Dj,,, which is
den

proportional to the occupation count .
As mentioned in Section 4.5.3, the value E=halfmax represents a way of setting
E as follows: find the Gaussian-specific D values as twice the value for positive
variance updates, and set E to half the maximum value of D /'y;lﬁl“, i.e, half the
value it would have had to be to set D at that maximum value. E=halfmax is
compared with £=2 in Tables 5.4 and 5.5, which show that although the MMI
criterion is increased more slowly with EF=halfmax, the final WER is generally
slightly better. However this technique has not been used for further experiments
because of concerns that it adds to the system complexity and may lack robustness
because it sets F based on possibly atypical Gaussians. A similar effect may
be obtained by setting E to a value linearly increasing with iteration, which is

investigated in Section 8.14 in the context of MPE training.

The conclusion from these experiments is that a value of E in the range 1 to 2 is
probably suitable; the appropriate value should be determined empirically based
on recognition results on a development test set.

The optimal test set performance is generally reached between 2 and 8 iterations;
typically training is continued for 4 iterations for MMI.

5.3.7 Lattice size

The lattices used for training MMI on the Switchboard 65h-trained (h5train0Osub)
system were further pruned to three different levels (Table 8.6) to investigate the
effect of lattice size on MMI training. The pruning thresholds are given in nat-
ural log likelihood values relative to the most likely path. The original lattices
(Baseline) were generated by recognising the data with a bigram language model,
and then phone-marked with a unigram language model. They were then pruned
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Training Iteration
0 1 2 3 4 5 6 7 8
%WER on eval97sub
E=20 444 428 419 41.7 413 413 412 413 414
E=halfmax (1.7...7.5) | 444 426 419 416 414 412 412 413 41.2
%WER on eval98
E=20 45.6 44.1 43.1 425 423 419 41.7 416 41.8
E=halfmax (1.7...7.5) | 45.6 44.0 429 425 422 421 420 419 41.8
Training Iteration
0 2 4 6
MMI criterion / # frames
E=20 -0.0602 -0.0496 -0.0461 -0.0408
E=halfmax (1.7...7.5) | -0.0602 -0.0487 -0.0458 -0.0412

Table 5.5: Varying E (exact-match training) on Switchboard, h5train00 (265h)
training, 12 Gauss/state.

with various thresholds, as shown in Figure 5.8. The lattice depths given are the
average number of arcs crossing each time frame. The lattice generation tools do
not generate the alternate time alignments for each word unless a particular time
alignment is on the best Viterbi path for some sentence. This means that the
lattice may be more complete than lattices of a similar depth generated using a
tool that prints out all likely time alignments of each sentence.

Table 5.9 shows the effect of MMI training with these different sets of lattices.
As can be seen, use of the pruned lattices degrades results but with the most
mildly pruned (Pruned-1) lattices the difference is not apparent until the third
iteration. It can be seen that the MMI criterion reaches a higher value with
the pruned lattices since there are less competing hypotheses. The conclusion
from these experiments is that above a pruning threshold of 100, the difference
in word error rate from lattice pruning is in the region of 0.2%, which is probably
acceptable?.

5.3.8 Lattice language model: zero-gram, unigram or bi-
gram

This section investigates the effect of the language model used for discriminative
training.

2Note: the version of the experiment of Table 5.9 we reported in [Woodland & Povey, 2002]
uses the wrong baseline recognition results (reporting results for E=2 not E=1), but the con-
clusions are unaffected.
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Training Iteration
0 1 2 3 4
Average %WER on csrnabl_{dev,eval}
12-mix, £F=0.5 9.57 9.24 9.07 9.05 9.08

12-mix, E=1 9.57 9.35 9.25 9.18 9.10
12-mix, B=2 9.57 9.48 9.31 9.26 9.27
12-mix, £ =4 9.57 9.57 9.48 9.40 9.30
1-mix, £=1 14.70 13.74 13.14 12.53  12.26
1-mix, =2 14.70 14.30 13.69 13.23 13.16

MMI criterion / # frames
12-mix, £ = 0.5 | -0.0128 -0.0083 -0.0061 -0.0048

12-mix, E=1 -0.0128 -0.0099 -0.0082 -0.0069
12-mix, £=2 -0.0128 -0.0111 -0.0099 -0.0089
12-mix, £ =4 | -0.0128 -0.0119 -0.0111 -0.0104
1-mix, =1 -0.0126 -0.0192 -0.0174 -0.0161
1-mix, EF=2 -0.0126 -0.0203 -0.0191 -0.0182

Table 5.6: Varying FE for exact-match training on NAB

avg %WER ins/del
on bndev96 partitioned test set | ratio
Training Iteration

Training setup | 0 1 2 3 4 4
E=1 29.6 284 28.0 279 279 0.95
E=2 29.6 289 28.3 28.1 28.0 0.98

Table 5.7: Varying smoothing constant E on Broadcast News: 12 Gauss/state
HMM set

Some previous work has discussed the effect of the language models used in the
“denominator HMM” used for MMI training. In [Normandin et al., 1994], it was
found that MMI training without a language model degraded performance. It was
suggested that the reason for this was that the language model acts like an inser-
tion penalty and this effect during training is important. In [Schluter et al., 1999],
it was found that given a choice of zero-gram, unigram, bigram and trigram lan-
guage models, a unigram language model worked best for MMI training irrespec-
tive of whether a unigram, bigram or trigram model was used for testing.

In this work, bigram, unigram and scaled unigram language models are investi-
gated for use in training. These language models were applied to lattices gen-
erated using a bigram language model (since it is time-consuming to regenerate
the lattices). Testing was with a trigram LM in all cases. A scaled unigram,
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Lattice Lattice Prune
Ident Depth  Thresh
Baseline 124 -
Pruned-1 34 100
Pruned-2 8.4 50
Pruned-3 4.8 25

Table 5.8: Characteristics of different denominator lattices used for h5train0Osub

training.

Table 5.9: Lattice pruning for training on Switchboard, h5train00sub (65h) train,

Lattice Iteration
Ident 0 1 2 3 4
%WER on eval97sub
Baseline 46.0 43.8 441 43.9 44.3
Pruned-1 46.0 43.8 441 441 44 .6
Pruned-2 | 46.0 44.1 43.9 44.6  45.5
Pruned-3 | 46.0 44.3 44.2 454  46.9
%WER on eval98
Baseline 46.6 44.9 44.2 44.3 444
Pruned-1 46.6 44.9 44.3 444  44.6
Pruned-2 46.6 44.9 44.3 44.9 45.8
Pruned-3 46.6 45.0 44.6 45.5 47.0
MMI Criterion on pruned lattice
Baseline | -0.0545 -0.0415 -0.0335 -0.0279
Pruned-1 | -0.0542 -0.0413 -0.0332 -0.0272
Pruned-2 | -0.0532 -0.0397 -0.0302 -0.0221
Pruned-3 | -0.0510 -0.0362 -0.0241 -0.0130

12 Gauss/state, Exact-match, E=1
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ins/del

Iteration 0 1 2 3 4 | last iter
%WER on eval97sub
Unigram 46.0 44.5 43.7 43.9 43.8 0.22
Bigram 46.0 449 442 441 442 0.24
Zerogram 46.0 454 0.17
Zerogram, ip = 2 46.0 45.0 44.7 45.1 457 | 0.29
Unigram?- 46.0 449 446 45.0 454 0.12
Unigram®®, ip=0.625 | 46.0 44.8 44.3 44.4 44.6 0.20
Unigram?!® 46.0 44.1 43.6 43.5 43.7 0.49
%WER on eval98

Unigram 46.6 454 44.7 444 443 0.28
Bigram 46.6 459 453 449 448 0.25
Zerogram 46.6 45.8 0.17
Zerogram, ip = 2 46.6 45.7 454 453 457 0.36
Unigram?5 46.6 45.6 45.0 451 452 | 0.17
Unigram®S, ip=0.625 | 46.6 45.6 45.0 44.6 44.6 0.24
Unigram!- 46.6 454 449 448 45.0 0.58

Table 5.10: Varying language model in training lattices, on Switchboard 65h
(hbtrain00sub) training (Exact-match, E=2).
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Training iteration Ins/del

0 2 4 6 8 ratio
WER on eval98
Bigram | 45.6 43.8 42.8 421 41.8| 0.24
Unigram | 45.6 43.1 42.3 41.7 41.8 | 0.33
(MLE) | 45.6 0.27

Table 5.11: Unigram vs. bigram training on Switchboard; h5train00 (265h) train-
ing, 16 Gauss/state HMM set, E=2.

e.g. unigram®®, indicates scaling both the language model log probability and
the word insertion penalty by 0.5. Scaling by 0.0 leads to a zero-gram lan-
guage model. Since this affects the insertion/deletion ratio on recognition, some
scaled-down experiments use in addition a phone insertion penalty which is a log
likelihood (not scaled by ) inserted between phones to reduce the likelihood of
longer transcriptions. This is used instead of a word insertion penalty to replace
the language model’s penalisation of long words (since they are generally less fre-
quent). The phone insertin penalty is indicated for example as ip = 2 in tables,
for an insertion penalty of 2. This corresponds to inserting a log probability of
-2 between each pair of phones.

Effect of language model on Switchboard

Table 5.10 compares three kinds of language model on on systems trained on
the Switchboard h5train0Osub (65h) training subset. The best of the language
models for this system was a unigram LM.

With a zerogram or scaled unigram LM, the test set results on the larger eval98
test set were worse than with unigram, even though the insertion/deletion ratio
was adjusted by a phone insertion penalty to be about the same as baseline
(unigram). This appears to be due to insertions of common words.

Table 5.11 compares unigram and bigram language models on the full h5train00
(265h) training set. There is no difference on the last iteration (8), although on
previous iterations unigram training was significantly superior (the significance
interval is about 0.4% for pairs of similar training setups such as these).

Table 5.12 summarises results which appear more fully in a different context, in
Table 8.8 in Section 8.4. The results are for MMI training on Switchboard with
a very widely varying amount of training data, using a small HMM set with 3088
states and 6 Gaussians per state. The comparison is the absolute WER between
unigram and bigram-trained HMM sets. In most cases unigram is better; in two
cases bigram gives slightly better results, although there does not appear to be a
clear pattern to the difference. It was expected that bigram would become better
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Amount of training data
1.125h 2.25h 4.5h  9h 18h 68h 265h
Change, ug vs. bg | +0.2 00 -05 +0.2 400 -03 -0.6

Table 5.12: Unigram vs. bigram lattices for a small HMM set and varying training
data on Switchboard, comparison of results from Table 8.8. Negative numbers
mean unigram is better.

with increasing amounts of training data, but this appears not to be the case.

Effect of language model on NAB

Table 5.13 shows that for training a typical system on the NAB corpus a un-
igram language model works better than bigram for a wide range of training
conditions, but with an appropriate insertion penalty better results are gained
with a zero-gram language model, and the best with a scaled-down unigram.
However the best result (scaled-down unigram) is not significantly better than
the most appropriate baseline, which is a unigram LM with E=1 and k = 1/15.

Effect of language model on Broadcast News

Table 5.14 compares bigram, unigram and scaled-down unigram language models
on BN, both with I-smoothing (7 = 50) and without. These results do not show
any clear advantage for any language model.

Insertions of common words

Comparison between the test-set recognition output from a model trained with
a zero-gram language model with the most appropriate insertion penalty, and
one trained with a unigram language model shows an interesting difference in
frequency of the word “that”. On the Switchboard eval97sub test set, the zero-
gram trained output has about twice as many instances of the word “that” as
the unigram-trained output. A smaller increase in “that” was seen on the NAB
recognition output. MMI training with a zero-gram language model increases
the likelihood of the models of “that” because a zero-gram LM with per-phone
insertion penalty gives it a much lower likelihood than a regular language model
(“that” being a very common word), and the acoustic model tries to compensate.

Summary of effects of LM during training

In summary, the results are in agreement with the conclusions of previous authors
in that a unigram language model is better than bigram or no language model.
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avg %WER on csrnabl_{dev,eval}
Iteration relative | ins/del
0 1 2 3 4 %impr | (it 4)
Bigram
bg, k =1, E=1 9.57 9.61 9.54 947 9.42 1.6% 0.96
bg, k =1, E=2 9.57 9.56 9.58 9.55 9.54 3.1% 0.95
bg, k =1/15, E=1 9.57 9.63 9.55 9.44 9.42 1.6% 0.96
bg, k = 1/15, E=2 9.57 9.57 9.59 9.58 9.53 0.4% 0.95
Unigram
ug, k =1, F=1 9.57 9.33 9.36 9.35 9.30 2.8% 0.96
ug, Kk =1, £=2 9.57 9.55 941 9.33 9.34 2.4% 0.99
ug, k =1/15, E=1 9.57 9.35 9.25 9.19 9.10 4.9% 0.89
ug, k = 1/15, E=2 9.57 9.48 931 9.26 9.28 3.0% 0.94
Scaled /zerogram
2g, k = 1/15, E=1, ip=1.25 | 9.57 9.40 923 9.13 907 | 52% | 0.89
zg, k = 1/15, E=1, ip=1.75 9.57 9.34 9.31 9.17 9.18 4.1% 1.10
2g, k = 1/15, E=1, ip=2 957 9.32 931 921  9.12 47% | 117
ug®s k = 1/15,E=1, ip=0.625 | 9.57 9.37 9.31 9.06 9.02 5.7% 0.88

Table 5.13: Varying language model in training lattices, on NAB: zero/uni/bi-
gram, F = 1,2, scaled/not scaled, 12 Gauss/state

avg %WER ins/del
on bndev96 partitioned test set ratio
Iteration

Training setup 0 1 2 3 4 5 )
bg, 296 29.0 284 28.1 281 279 0.81
ug, 29.6 284 28.0 279 279 28.0| 0.98
ug?® 29.6 287 28.1 279 278 276 | 0.8
ug, 7=50 29.6 284 279 278 27.7 275 | 1.04
ug®s, 7=>50, ip=0.625 | 29.6 28.7 28.1 27.9 27.8 27.6| 0.94

Table 5.14: Bigram vs Unigram vs Unigram®®, for MMI on Broadcast News, 12
Gauss/state, with and without I-smoothing, E=1
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Test %WER on eval98 (and ins/del ratio)

ins Probability scale
pen 1/24 1/12 1/6

MLE (no scale) 46.6 (0.25)

MMI, E=1, (4 its) 0.0 | 44.9 (0.18) 44.4 (0.29)  45.0 (0.35)
0.25 | 44.6 (0.31)

MPE, E=2, 7 = 50 (8 its) 0.0 | 43.3 (0.26) 43.1 (0.34)  44.5 (0.39)
0.2 | 43.2 (0.36)
0.4 | 43.7 (0.48)

(a) h5train00sub, 68h

ins | Test %AWER on eval98 (and ins/del ratio)
pen Probability scale
1/12 1/6
MLE (no scale) 45.6 (0.27)
MPE, E=2, 7 = 100 (4 its) 0.0 | 41.6 (0.28) 42.7 (0.33)

(b) h5train00, 265h

Table 5.15: Varying x (probability scale) and ip (insertion penalty), on Switch-
board: unigram lattices.

With the use of a per-phone insertion penalty, better results can sometimes be
got with a zero-gram (no language model) or scaled-down unigram, but this is
not consistent across test sets and is associated with an increase in insertions of
common words. Note that these experiments applied various language models
to lattices generated with a bigram language model, but experiments with MPE
training seem to indicate that using a unigram language model right from the
start is the best approach (see Table 8.26).

5.3.9 Probability scale

The probability scale x, like the language model, has an effect on the test set
insertion/deletion ratio. When « is decreased from its default value, an insertion
penalty has to be used to prevent an increase in word deletions when testing.

Table 5.15 shows the results of varying the probability scale x on Switchboard.
The default value of k is the inverse of the normal language model scale, 1/12
in the case of Switchboard. This appears to be close to the optimal value; no
improvement was gained by varying x from the default, even when the insertion
penalty is varied so as to keep the testing insertion/deletion ratio constant.

Table 5.16 shows the effect of varying scale k on on NAB. Again, if ip is set to
0 the optimal scale seems to be close to the default value of 1/15. But when
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Test %WER on on csrnabl _{dev,eval} (ins/del ratio)
# Probability scale k (default=1/15)
Training setup its  ip 1/120 1/60 1/30 1/15 1/7.5
MLE (no scale) 9.57 (0.95)
MMI:
E=1 4 00 9.73 (0.43) 9.03(0.67) 9.10 (0.89) 9.19(0.93)
0.3 8.87(0.86)
0.4 8.91(0.99)
0.5 9.10 (0.74)
0.75 9.08 (0.99)
E=2 4 075 8.92 (1.04)
E=1,7=50 4 0.0 9.19 (0.91)
0.3 8.83 (0.92)
0.5 8.75 (0.84)
3 0.7 | 8.73 (0.80)
4 0.7 |9.03(0.78)
E=2,7=50 4 0.5 8.99 (0.88)

Table 5.16: Varying x (probability scale) and ip (insertion penalty), on NAB;
unigram lattices.

the insertion penalty ip is varied to keep the insertion/deletion ratio roughly
constant, a smaller scale can give better results. For example, at a scale of
k =1/60, an insertion penalty of 0.5 and I-smoothing at 7=>50, the error rate is
8.75; for comparison, with 7=50 and x =1/15 the error rate is 9.19.

Table 5.17 is an experiment on Broadcast News which compares some default
setups for MMI training with the optimal setup from NAB (an extra factor of 1/4
for the scale k and a phone insertion penalty of 0.5). This gives an improvement
of 0.4% absolute compared with the best baseline; the 95% significance interval
is in the region of 0.4% (Table 5.1).

An experiment with the same setup on Resource Management failed to find an
improvement from this more severe probability scaling: the improvement was the
same with either baseline or more strongly scaled training with WER reduced in
both cases from 4.1% (MLE baseline) to 3.9% on all four test sets together.

Summary of results from probability scaling

In summary, although the baseline approach of setting x to the inverse of the
recognition language-model scale is a simple way to get good results, two out of
the four corpora (NAB and BN) showed an improvement from a smaller proba-
bility scale (1/4 the normal scale) coupled with a phone insertion penalty used
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avg %WER ins/del
on bndev96 partitioned test set | ratio
Iteration

Training setup 0 1 2 3 4 4
k=1/14, E=1, 7=0 29.6 284 28.0 27.9 279 0.96
k=1/14, E=2, 7=0 29.6 289 283 28.1 28.0 0.98
k=1/14, E=1, 7=50 29.6 284 279 27.8 277 0.98
k =1/56, E=2, 7=50, ip=0.5 27.3 0.86

Table 5.17: Varying  (probability scale) and ¢p (insertion penalty), on Broadcast
News Channel 1: MMI, 12 Gauss/state, unigram lattices.

during training to prevent changes in the insertion/deletion ratio. But there was
no improvement on the Switchboard and Resource Management tasks.

Why does « affect the insertion/deletion ratio?

As can be seen for example from Table 5.16, varying the language model scale has
an effect on the insertion/deletion ratio. This appears to be related to changes in
specific HMMs causing changes in frequencies of common short words, for reasons
set out as follows.

The change in insertion/deletion ratio appears not to be related to changes in
the transition likelihoods: when the transition values of the trained models on
the k = 1/7.5 and k = 1/30 experiments from Table 5.16 were set back to their
untrained values, the insertion/deletion ratio changed by less than 0.01 in the
direction of the baseline (k = 1/15) value. With a low acoustic scale (k = 1/30)
the trained variances were slightly smaller than with an acoustic scale closer
tol (k = 1/7.5). 90% of k = 1/7.5 variances were within —0.180...0.177 of
their MLE-trained value, and for k = 1/30 this was —0.232...0.179. However
this would be expected to produce more, rather than fewer, insertions in the
k = 1/30 system since it would accentuate the range of acoustic likelihoods
and be equivalent to a scaling-down of the language model. It seems likely by
elimination that the effect is due to changes in HMMs used in specific common
words, which appear to change in frequency when the scale x is changed.

5.3.10 Lattice regeneration

Experiments on the NAB and Switchboard corpora gave mixed results on the
effect of regenerating lattices after some initial iterations of MMI training. Gen-
eration of lattices by recognition of the training data with MMI-trained models in
a NAB experiment, and doing MMI training from scratch on a composite of the
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avg %7WER on csrnabl_{dev,eval} rel

Iteration % impr | ins/del
MMI (E=1) 0 1 2 3 4 5 | (it4) | (it4)
k=1/15 957 935 9.25 9.19 9.10 4.9% 0.89
k=1/15, new lats 9.57 9.26 9.15 9.05 9.06 9.06 | 5.3% 0.72
k=1/60, ip=0.5, (=50 9.57 9.18 9.01 892 875 868 | 8.6% 0.84
k=1/60, ip=0.5, i=50, new lats | 9.57 9.26 9.00 8.93 881 875 | 7.9% 0.86
MPE (E=2) 0 2 4 6 8 10| (t8) | (8
k=1/15 9.57 9.06 896 8.98 9.00 9.00 | 6.0% 1.01
k=1/15, new lats 9.57 9.13 896 898 9.02 9.00| 5.8% 1.01

Table 5.18: Lattice regeneration vs. original lattices, on NAB, 12-mix, unigram
lattices.

Iteration

MMI (E=1) 0 1 2 3
k=1/15 -0.0128 -0.0099 -0.0082 -0.0069
k=1/15, new lats -0.0124 -0.0108 -0.0096 -0.0088
k=1/60, ip = 0.5, i = 50 -0.0134 -0.0124 -0.0116 -0.0108
k=1/60, ip = 0.5, ¢ = 50, new lats | -0.0139 -0.0130 -0.0123 -0.0117
MPE (E=2) 0 2 4 6
k=1/15 0.917 0.946 0.953 0.957
k=1/15, new lats 0.915 0.942 0.949 0.953

Table 5.19: Lattice regeneration vs. original lattices, on NAB: Criterion optimi-
sation (critera calculated using training lattices).

original and new lattices, made only a slight improvement (0.04% absolute) to
baseline MMI results and degraded two other discriminative criteria (I-smoothed
MMI and MPE); none of these results are significant.

A 0.3% absolute improvement was found when lattice time boundaries were re-
aligned after some iterations of MMI training for a Switchboard task with 265h
of data. The details of these experiments are given as follows.

Lattice regeneration and merging on NAB

Table 5.18 shows the effect of regenerating the lattices used for MMI training after
4 iterations of baseline MMI training (as in the top row of the table) and then
combining these with the original lattices to produce composite lattices containing
all pairs of paths. Experiments marked “new lats” used these composite lattices
to discriminatively train HMMs starting from an ML-trained system. A slight
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improvement of 0.04% absolute is obtained with the baseline MMI setup (top two
rows) but this is not matched with the other two configurations tested, which are
respectively I-smoothed MMI (see Section 4.3) with a different probability scale
and Minimum Phone Error (MPE). It might be that the standard MMI showed
more improvement because the lattices were specifically generated from it. In
any case, the improvement even in the case of standard MMI is relatively small.

Table 5.19 shows the effect of the combined lattices on optimisation of the MMI
and MPE criteria. In all cases the criterion is optimised more slowly with the
combined lattices. This is what is expected since a greater number of confusable
sentences are more difficult to “learn”.

Lattice re-alignment on Switchboard

In an experiment where MMI training (E=halfmax) was performed on the Switch-
board h5train00 (265h) training set, there was an improvement of 0.3% on eval98
(from 41.8 to 41.5, relative to a baseline of 45.6) when instead of training for 8
iterations using the original lattices, the lattice phone boundaries were re-aligned
halfway through training?.

In summary, lattice regeneration or re-alignment can give small improvements
of up to 0.3% absolute with MMI training but this has not generally been done
since it is very computationally expensive. In general it is sufficient to use a
single set of lattices, but if computation time is not a problem the lattices can be
regenerated halfway through training and this may improve results.

5.4 Conclusions

This chapter has explained the framework for lattice-based MMI training and
reported experiments investigating various aspects of the training procedure.

The conclusions from the experimental results are:
e MMI training can be effective for competitively sized LVCSR systems.
e The exact-match approach to probability scaling should be used.

e Setting the constant E to 2 (or possibly 1), and running training for 4 to 8
iterations, is suggested; experiments should be done on each corpus to find
the best regime.

e Lattices generated with a pruning threshold larger than about 100 are suffi-
cient; regeneration of the lattices after some iterations of training may give
a small improvement but it not necessary.

3The results reported in [Woodland & Povey, 2002] overestimated this improvement through
using a baseline from only 4 iterations of training
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e A unigram language model should be applied to the lattices, or possibly a
scaled-down unigram if a phone insertion penalty is added.

e A probability scale equal to the inverse of the normal language model scale
should be used. On some corpora there may be an advantage in using a
smaller value, e.g. 1/4 this value, and introducing an (unscaled) insertion
penalty of about 0.5 to prevent this changing the insertion/deletion ratio.



Chapter 6

Variants of the EB Update
Formulae

6.1 Introduction

This chapter investigates variants of the Extended Baum-Welch (EB) update
equations. Alternative update equations, based on similar principles but using
slightly different assumptions, are derived and investigated experimentally.

Section 6.2 derives a number of variants of the EB update for the Gaussian pa-
rameters; Section 6.3 derives a new update for weights and transitions; Section 6.4
reviews previous work on the topic and gives experimental results, and Section 6.5
gives conclusions.

6.2 Variants of the EB update for Gaussians

This section derives various alternatives to the EB update for Gaussians.

Section 6.2.1 presents the idea of using a linear function of the HMM parameters
for the denominator auxiliary function. Section 6.2.2 derives update equations
from this linear-denominator approach. Section 6.2.3 gives a variant to the linear-
denominator approach, based on Newton’s method of function optimisation.

6.2.1 Linear denominator auxiliary functions
The MMI objective function can be expressed as
Frunir(A) = log p5 (O Muum) — log p5 (O Maen, M), (6.1)

where My, and M ge, are the models corresponding to the correct word sequence
and all possible word sequences respectively, x is a probability scale used in

71
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calculating model likelihoods, and A is the HMM parameters; for simplicity, just
one training file is considered in this notation. This can equivalently be written
as

fMMI()\) = Mlil/?l()\) - ff/fﬁl()‘), (6-2)

to make the application of auxiliary functions clearer. An auxiliary function
Gami(A, A') is sought which will ideally be the same as Fypia(A) at the value
A = X but less everywhere else, i.e. a strong-sense auxiliary function around X’
(see Equation 4.1 for the definition of a strong-sense auxiliary function). The
resulting auxiliary function will be written as follows:

gMMI()\, )‘I) = 11\1/}11\1/1111()‘7 )‘I) - 1(\1;1{1/11()‘7 )‘I) (63)

In obtaining an auxiliary function for the expression, the two terms can be han-
dled separately. For Giiai(A, \') the auxiliary function used in normal Baum-
Welch updates for ML training can be used; this is a strong-sense auxiliary func-
tion for the first term JFEut()\) (see Section 4.2.3). The case of Gem. (A, ) is
more difficult because its likelihood function is negated. Ideally a function is
needed which is the same logp(O|Mgen, A) at A = X' but more, not less, every-
where else, i.e. is a strong-sense auxiliary function for F3u ()). As discussed in
Section 4.5.4, this seems to be impossible without accumulating other kinds of
statistics; but the aim is to construct a weak-sense auxiliary function which will

be as close as possible to a strong-sense auxiliary function.

An obvious choice for Gd& (X, X') is a simple linear function of all the means

and variances, with a gradient corresponding to the current differential of the
likelihood function, i.e a gradient equal to %p(O\Mden, A)|x=x. There is good
reason to believe that this should usually be more than the real likelihood func-
tion p5(O|Mgen, A) where A # X. It is clear that the function p§(O|Mgen) is
a roughly convex function of ), in the sense that it is small for extreme values
of p or 0? and large for values somewhere in the middle. There is no way one
can be sure that p(O|Mgen, A) might not have separate peaks with valleys (re-
gions of concavity) in between, and in fact it seems certain for multiple Gaussian
systems at least that this would be the case (consider moving the parameters of
two Gaussians in a mixture slowly and simultaneously towards the parameters of
the other Gaussian). However, p(O|Mgen, A) must certainly have more convexity
than concavity ! and it can expected that if it is assumed to be convex and a flat
function is used for G (A, \') the update formulae will generally work. Note
that although his convexity assumption is not strictly true and the resulting aux-
iliary function will not be a strong-sense auxiliary function for Fynm(\) around
X, it will still be a weak-sense auxiliary function so convergence will be to the
correct point.

! This could probably be defined more precisely but it would not lead to a proof of the
equations derived here so the issue will not be pursued.
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A linear auxiliary function depends on the representation of parameters (e.g,
whether the variance is represented as 1/0? or logo?). A linear function with
one representation will not be linear with the other. Convexity and concavity are
also not invariant to these different representations.

Advantage of linear-denominator approach

An advantage of the approach of using a linear function for the denominator
likelihood is that it is a way of deriving a (weak-sense) auxiliary function for
the MMI objective function that can be expressed as a simple rule applicable
to other situations, saying: for any terms in the objective function for which
strong-sense auxiliary functions exist, use a strong-sense auxiliary function; for
any other terms, use a linear function. As will become clear in Section 6.2.2 this
leads to something very similar to the EB update where £ = 1, without having
to arbitrarily devise a formula for the Gaussian-specific constant D,.

6.2.2 Optimisation of linear denominator auxiliary func-
tion

If a linear auxiliary function for the denominator model is written as G2, (X, X'),
and the normal ML auxiliary function as applied to the denominator as G2, (A, \),
a combination of the two kinds of auxiliary function can be used as a more general
choice for G (X, X'), using a constant E > 1:

1(3;1{1/11()" )‘I) = (1 - E)G(I:\IEEE()\’ )‘I) + EGﬁﬁgar()‘a )‘I) (64)
When E = 1 this is a linear denominator auxiliary function, but other values
of E are permitted for extra smoothing and slower updates. G (X, ') is not

linear

uniquely defined as it depends on which form of the variances is defined as the

parameter: ie, logo?, %, etc. G (X, X) is the linear combination of the

linear
parameters A such that its differential with respect to the parameter set A is the
same of the normal ML auxiliary function G$&5 (A, X') at the point A = X’ used to
obtain the statistics. As will be seen, expressing the variance as % and ensuring
that £ > 1 leads to an update formula that will always give positive variances,

which seems a desirable feature for an update formula to have.

Defining g},i" as the average data value 67" (O)/7;m for the numerator, and y_z?;lnm

as the average squared data value 85 (O?) /v;m, and likewise for the denominator
model, the numerator part of objective function for a single dimension and a single
Gaussian j, m is:

num num y_zr'l;l"Lm o 23?1171;1‘11# jm + sz
Mur(A, ) = —0.57jm IOg(‘72) + = ;2 : s (6.5)

jm
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Denominator auxiliary function, linear in log(o?)

If we choose to make the linear part of Gify;(A, ') linear in log(o?), then defining
Smum (1)) as the variance of the numerator statistics around p, i.e ¢2"  — 27"+
1%, and likewise for the denominator, the denominator part of the auxiliary func-

tion becomes:

d ! d 2 S ()
1\/31/[1()" A ) = - 05(1 - E)vj;zn log(gjm) + 2
Tim
Sden " 2 , rie — mden
_ 0.5E7;l1?1n log(o'?m) (1 _ 5 (:u’O g)) + 'U]m (/'1'.777"'720 g y]m)
j,m,orig j,m,orig
(6.6)
where o7, ;. and o7, are the original and updated variances; and likewise for

the means. The first term corresponds to the “EM-like” part of the denominator
auxiliary function (1 — E)GEn, (A, )'), and the second term is the linear part of

the auxiliary function EGE®, (X, X'); it is linear in the updated parameters.

Denominator auxiliary function, linear in 1/0?

If we choose to make the linear part of Gty (A, \') linear in 25 (which seems the
other obvious choice given the form of the Gaussian likelihood function) then the
denominator part becomes:

en en Sden(u)
20, 0) = - 03(1 = Bt [os(a) +
jm
en 1 en 2(“ ',m,ori - gd’s’?)
o 0'5E7;'im T(Sd (luforig) - ng',m,orig) + Hjm . 2 : ] ’
Jjm j,m,orig
(6.7)

Denominator auxiliary function, linear in 1/¢

Neither of the above two approaches is ideal, the main problem being that the

auxiliary function used for MLE (and for the numerator part of MMI) becomes
linear at one end when expressed either in terms of % or logo?, and this can
lead to negative updates. If expressed in terms of % the ML part of the auxiliary

function is convex everywhere, which is more desirable. The denominator part
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then becomes:

2den den

(A, A) = — 0.5(1 — E)yoer llog(ajzm) 4 Ylim ya2 o jm + M
jm
den 2 _den
rig) — I Ti 2 j, 1,011
~ 0SB |2 L)~ T, i = )] .
J:m,org j,m,orig

(6.8)

Update for mean

The update equation for the mean is as follows, irrespective of the representation
of the variance:

snum __ N —den __ . den _ N
,ynumy 62/—‘0“5 + (E _ 1),Ydeny &zﬂorxg _ E,ydeny . .I“OI‘IE
~ . + orig (6 9)
/‘L - :uorlg 7num+(E_1)7den °
&2

where o aong and aong are the original and updated variances.

Updates for variance

There are alternative updates for the variances. If the auxiliary function in
Equation 6.6 (linear in logo?) is used the variance update becomes as follows:

. num Snum 7 E — 1 den Sden 7
ynum ( )7den _ E,Yden(l ™ (Horig )

O'] m;,orig

If the auxiliary function in Equation 6.7 (linear in —3) is used,

0?2 _ ,ynumSnum(ﬂ) -+ (E — 1),Ydensden(/l) - E(Sden(,uorig) - 0-_72',m,0rig) (6 11)
ynum | (E' _ 1)f}/den ’

If the auxiliary function in Equation 6.8 (linear in ) is used,

@ = (B 1
Sden(:uorig) - 0-]2',m,orig

0 j,m,orig

c = —(’ynumsnum(ﬂ)+(E—1)’7densden(ﬂ))

b = E’}/den

and the updated o is given by

2
- 4
5=2F \/2(2 +dac) (6.12)
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In all of these equations i and 6 are interdependent and must be repeatedly up-
dated until they converge. Out of the three equations the last one (Equation 6.12)
is the only one that can be guaranteed to result in a positive variance (for £ > 1).
This stems from the fact that out of all the simple representations of the variance
(6%,0,1/0% logo,1/0) the only one in which the Gaussian likelihood function
is convex everywhere in the allowed region (and does not approach linearity at
either extreme) is 1/o. This means that if I is chosen to represent the parame-
ter, the gradient of the numerator part of the Gaussian likelihood function will
dominate the linear denominator part for extreme values of 1/0, so the auxiliary
function is bound to have a maximum within the allowed range. Experiments
are only performed with this last version of the update equations.

6.2.3 Newton’s method for optimisation of Gaussians

As an alternative way of deriving updates for the linear-denominator auxiliary
function of Equation 6.4, a method based on Newton’s method was devised.
Rather than find the maximum of the auxiliary function, Newton’s method is
used to find an update based on the first and second differentials of the auxiliary
function w.r.t. each parameter. Off-diagonal elements in the Hessian are ignored.
This differs from a gradient descent approach using estimates of the second dif-
ferential such as Quick-prop in that the second differential is obtained from the
auxiliary function, which is not an estimate of the second differential of the true
objective function but will in general be more negative.

Differentiation of Gymi(A, \') as in Equation 6.4 gives:

0g o gnum — lhori n,gden — lhori
i = qumd T Horig _ jdend " forig (6.13)
2 A=) Uorig Uorig
0%G 1
T2 (Y™ 4 (B = 1)) (6.14)
O | y—x agrig

Denoting logo? as L,

o GQnum " den .
%9 = 0.5y™™ (# — ) ryden < ”‘° §) _ 1)(6.15)
oL A=) Uoﬁg orlg
0°g 8™ (Horig) S (u )
— —0.5 | yrumZ__fotig) | (g 1)ydenZ Forig) ) 6.16
oL? A=N (7 grig N ( ) orlg ( )
The update for the means is 1 = u— a‘zgfg“z, with a similar update for L = log o2

except that the step size is limited to 0.5 (larger sizes of update may be inaccurate
as the quadratic approximation to the auxiliary function is only valid locally).
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%WER on eval98
MLE || MMI | Weights | Transitions | Means | Variances
iter 4 | as MLE as MLE as MLE | as MLE
46.6 || 44.3 44 .4 44 .4 45.2 45.7

Table 6.1: Results for MMI-trained system on 65h hb5train0Osub with various
kinds of parameters reset to original MLE values. Training is exact-match, £ = 2.

6.3 Mixture weights and transition updates

This section discusses mixture weight and transition updates, including a deriva-
tion of an update rule which is a more general version of the one described in
Section 4.4.

Section 6.3.1 discusses the relative importance of weight, transition and Gaussian
parameter updates. Section 6.3.2 describes the standard EB update equations
for weights and transitions. Section 6.3.3 derives a new weight/transition auxil-
iary function, which is a more general form of the one described in Section 4.4.
Section 6.3.4 derives an update formula for the new auxiliary function.

6.3.1 Relative importance of weights and transitions.

Gaussian weights c;,, and transition likelihoods a;; make relatively little difference
to recognition results. Table 6.1 shows the effect of resetting various parameters
of a MMI-trained system to the original MLE parameters; the weights and transi-
tions are trained using the standard approach used in this thesis, which is the one
described in Section 4.4. It is unclear whether resetting the means or variances
to the original values will give a similar result to not training them at all, but
these results do confirm that weights and transitions make very little difference to
recognition results as they each seem to make only about 0.1% absolute difference
to test-set WER.

6.3.2 Standard weight and transition updates

The baseline weight /transition update is discussed at more length in Section 4.5.2.
This is the Extended Baum-Welch update coupled with an altered formula for
the differential of the likelihood function with respect to the weights, as suggested
in [Normandin & Morgera, 1991]. The update is:

. ¢m(0/0cimFvm(A) + C)
o > m Cim(0/0cjmFrmar(A) + C) (6.17)
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where 0/0¢;, Fumi(A), which is properly given by cjim('y;l;‘nm - 'yff;l“), is calculated

num den
instead according to the altered formula 0F/0c;,, = Ev";‘!.um — Zv’g‘den. C is set
m jm m ym

globally to the smallest value which gives all positive updates, plus a constant e.

Rows of transition matrices are updated according to an analogous formula.

6.3.3 New weight and transition updates

Since the baseline mixture weight update described in the previous section is
based on an ad-hoc formula for the differentials and cannot even be proved to
converge to the correct point (assuming it converges), an alternative formulation
was sought.

As discussed in Section 4.2, the important thing is that the gradient of the aux-
iliary function w.r.t the parameter should be the same as the gradient of the
real objective function, at the point where the parameters equal the previous
parameters.

That condition (the differentials being equivalent to the differentials of the real ob-
jective function w.r.t. the parameters, at the starting point) would satisfied by the
following auxiliary function for state j, which is extracted from two Baum-Welch
type auxiliary functions subtracted from each other (G™™(\, X)) — Gd(\, X)),
and is a weak-sense auxiliary function for the MMI objective function:

GO N) =D (e — y5e) log Cjm. (6.18)

m

However, optimising the above while enforcing positive weights would make some

weights zero. The following auxiliary function has the same differentials w.r.t.
the weights where the weights equal the original values c;, %, so it is a weak-sense

auxilary function for the MMI objective function around X"

,y(;len Ca ¢
G\ N) = Zﬁ;m log Cjm — ]C erig : (6.19)
m jm

The smoothing constant C' > 0 controls convergence: large C' leads to slow
updates, small C' leads to faster updates. C' =1 is considered the default setting:
this leads to the formulation given in Section 4.4.

6.3.4 Mixture weight auxiliary function optimisation

Optimisation for C <1

It is possible to find a strong-sense auxiliary function for the “objective function”
of Equation 6.19 which is guaranteed to converge for (0 < C < 1). Note that
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there are two levels of auxiliary function here: Equation 6.19 is a weak-sense
auxiliary function for the MMI objective function, and in this section a strong-
sense auxiliary function for Equation 6.19 is derived in order to maximise it.
The optimisation procedure is as follows. For all j, m set cg- ) — c°rlg (i.e. to the
original values from before the optimisation, which will henceforth be denoted
with the superscript “orig”) and then for iterations p = 0 to, say, 100, set for all
Jj,m

num | .(P) 7.(p)
C(p+1) ’y + cjm(kj)m( ) (6 20)
Jm num p ’
Z + c]mk]m
where
den (P) -1 den (P) -1

K® = [ max m  Sm ~ D [ Gm : (6.21)

m orig orig orig orig

m C ij ij ij

The values of ¢;n, after 100 iterations are used for the updated values (convergence
can be slow enough to make 100 iterations necessary for some values of parameters
and statistics).

The proof that this formula is guaranteed to monotonically increase the function
in Equation 6.19 is as follows. Suppose the current iteration is p and we wish to
find an auxiliary function for the function of Equation 6.19, giving more optmial
values c( Y. The objective function being optimised on iteration p is as follows:

M ,yden (P+1) ¢
num 1 m m
= E ’Y]m logc(P+) JC ( Zorig ) (6.22)
jm

which is a function of the unknowns cgm 2

form =1... M. The starting point for

et () :
the optimisation is the values on the previous iteration, cj,, * = c;,,. As explained

in Section 4.2, any function, including the one in Equation 6.22, is a strong-sense
auxiliary function of itself, and this property is unchanged by adding a smoothing
fuction, which is defined as a function which has its greatest value at the starting

C orig

Jjm

den (_P+1) c
point of the optimisation. Firstly, we can replace the term — 22 <ci'". ) , which

m Orlg Orlg
J Cim Cim

each m. This has the same differential w.r.t. ¢, "~ at cgf: Vo= cgfr)b and is
flat whereas the original function was either concave or flat (remembering that
0 < C <1 and the minus sign), so this change is equivalent to adding a function

which has its maximum at the starting point cg-f: ) = gf,)l,

gen [ 0\ (€7D
is a power of cgfn Y with a linear function of cp+1). — @) im < o ) , for

(p+1)

it is therefore a valid
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smoothing function. This gives an auxiliary function G(AP+1) A(P)) as follows:

,yden C(P) (€=1)
GAP) AP = ny;l;,‘lm log cg?::” cy;:“l) g ( gﬂ";) (6.23)
im Jm

Equation 6.23, in which cgf: Y are the variables, is still not analytically tractable

in terms of finding the maximum. Another smoothing function must be added,
this time with the objective of canceling out the linear terms in c(p 2 (the terms in

log c(er ) are more tractable). The new smoothing function is Zm 1 ](,,)L ( (¢) m 108 C; (pH) - cy::l)),

where k(-p ) are positive constants for each m. This function has its largest value at

(p).
the “starting point” cj,;

function now becomes:

this can easily be verified by inspection. The auxiliary

Jjm orig orig jm
Cim  \Cim

den (») (€-1)
H( P+1 p Z ,ynum log o (p+1) C(P+1) Vjm ( erln > + k;f,z ( logc (p+1) C(P+1)> .
(6.24)

The values kj(‘fg are chosen so as to make the coefficients of the linear terms
(P+ )

n c¢; in Equation 6.24 all become the same, so that due to the sum-to-one
constramt the linear terms reduce to a constant independent of the new weights
c;f: V. For optimisation which is as fast as possible, the coefficients k(-p ) are chosen

to be the lowest values which will make the coefficients of the terms in c(er ) all

be the same; the smallest k](fn will always be zero. This leads to the expression
in Equation 6.21 for k](ﬁl

Jm Jm

den (p) (C 1)
The coefficients of terms in c( ) become equal to ¢ (» +1)Z§ﬁ‘g ( gg;) — k%

-1
den (P)
(extracted from Equation 6.24) which equals — max,, Zﬁ;ﬁ‘g (cg—'”g> : this is a

jm jm
constant independent of m.

The coeflicients of terms in log c( Y become equal to Vim —|—c§p,,)lk](")l, this leads to
the update in Equation 6.20, Wthh can be derived using Lagrangian multipliers

in the same way as the normal Baum-Welch update for weights.

In the special case of C' = 1, the expression in Equation 6.21 for the constants
k](’,’,)b can be expressed more simply as:

den den
(p) _ Vim Yim
ki = ((mn?x cong> cong> . (6.25)

Jym

The optimisation is usually complete to machine accuracy within 10 or 20 itera-
tions; however some mixtures of Gaussians are more intransigent. Applying the
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transformation 100 times per Gaussian mixture seems sufficient to give the exact
solution for almost all Gaussian mixures, as judged from correspondence with an
alternative technique.

Optimisation for C > 1

The approach given above is only guaranteed to converge for C' < 1, since
G(AlP+1) \(P)) (Equation 6.23) is only a strong-sense auxiliary function for F(AP*1)
(Equation 6.22) around A®), if C' < 1. But it is a weak-sense auxiliary function for
any value of C, so if the optimisation method described above does converge it will
be to the correct point. In practice the optimisation does not converge for C' = 2.
But the optimisation can be made to converge if more of a smoothing function is

added at a later stage to slow down optimisation by increasing k](p ). Replacing the

m

c—1 c—1

den c(}’) A A ,Yden (I’)

term maxm i | g of Equation 6.21 with C'maxm 35 | Z5 where
jm jm jm Jm

C > 1 seems to lead to satistfactory convergence for C = 2 (the only case which

was tried for C' > 1).

6.4 Experimental results

6.4.1 Previous comparisons of of parameter updates for
MMI.

In [Kapadia, 1998], a comparison between Extended Baum-Welch (EB) and a
number of gradient-based algorithms was performed. As a result of his exper-
iments Kapadia favoured the “On-line Manhattan Quick-Prop” algorithm, al-
though the EB update was also effective. The comparison was on the basis of
function optimisation rather than recognition results. “Quick-Prop” is a method
which uses the gradients on two subsequent iterations to update parameters us-
ing Newton’s method?, with the limitation that the step size of a parameter may
not increase by more than a certain factor (say, 2). Manhattan refers to using a
fixed step size for all parameters on the first iteration; “On-line” means the data
is broken up into subsets which are used in rotation (but the gradient from the
previous iteration is taken to mean the last iteration with the same subset). How-
ever, that method seemed to have the potential for instability (as demonstrated
by some of Kapadia’s experiments using that technique for ML training), and
furthermore is more complex to implement than EB since it requires statistics
from previous iterations.

An experimental comparison between EB and gradient descent (GD) appears
in [Schluter, 2000]. In that work, EB was compared with a gradient descent

2Ignoring the off-diagonal elements of the Hessian.
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method with learning rates chosen to make the two almost equivalent (although
differing slightly for the variances). Both forms of update used the Normandin-
style EB update of Section 6.3.2 for the weights. No consistent difference in test-
set performance was seen between the two approaches (although EB updates
seemed to give better training set results). Note that Schluter uses a slightly
different formula for setting F from the one used in work presented here (see
Section 4.5.3).

In [Zheng et al., 2001], something very similar was done. EB was put in a GD
framework, resulting (like the above) in equations that differed only in the vari-
ance update. The authors chose the same formula for setting as is used here
(see Section 4.5.3), using E = 1 for relatively fast training. Again, no significant
difference between EB and GD was found.

The “Newton’s method” based technique compared experimentally in this chapter
with other techniques is essentially the the same as the approach investigated
in [Schluter, 2000] and [Zheng et al., 2001]. Again, no significant differences with
EB are found.

6.4.2 Comparison of Gaussian updates

Table 6.2 compares three different update schemes for Gaussians, applied to op-
timising the MMI criterion on the 68h training subset of Switchboard (the setup
is described in Appendix A).

The criteria compared are:
1. EB: Extended Baum-Welch update
2. “Flat-denominator” update (Section 6.2.2)

3. “Newton’s method”: Newton’s-method based optimisation for “Flat-denominator”
auxiliary function (Section 6.2.3)

All experiments reported in this section use the standard weight and transition
updates described in Section 4.4, which is equivalent to the more general one
described in Section 6.3 with the smoothing constant C set to 1.

Table 6.2 shows the difference in test set results between the three update formu-
lae. There is no consistent difference in recognition performance. In optimising
the criterion the standard EB equations seem to be best, although not on every
iteration of training.

The difference between the parameters of the updated model sets is summarised
as follows:

e The Newton’s-method update formula only differs from EB for the vari-
ances. After one iteration of the Newton’s-method update, almost all up-
dated variances are slightly larger with the Newton’s-method update than
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Training iteration
0 1 2 3 4
%WER on eval97sub

EB, E =2 46.0 44.5 43.7 43.9 43.8
Flat-denominator, £ = 2 46.0 444 43.7 43.9 43.9
Newton’s-method, E = 2 46.0 44.4 43.7 44.0 43.8

%WER on eval98
EB, E=2 46.6 45.4 44.7 44.4 44.3
Flat-denominator, £ = 2 46.6 45.3 44.8 44.4 44.2
Newton’s-method, E = 2 46.6 454 44.8 44 4 44.2

MMI criterion / n frames

EB, E =2 -0.05446 -0.04634 -0.04057 -0.03616
Flat-denominator, £ = 2 | -0.05446 -0.04630 -0.04063 -0.03632
Newton’s-method, £ = 2 | -0.05446 -0.04636 -0.04068 -0.03635

Table 6.2: Alternative Gaussian update formulae tested on Switchboard:
h5train00sub (65h) training, 12 Gauss/state

with the EB update, the average difference being around 10% of the total
change.

e The flat-denominator formula differs from the EB formulae for both means
and variances. Means differ in both directions by about 10% of the total
change due to the update and variances by about 15% of the total change,
with the variances generally being larger than EB as for the Newton’s-
method update.

6.4.3 Comparison of weight and transition updates

Table 6.3 compares the “new” update of Section 6.3 using C = 1 for both weights
and transitions, with the use of the EB formulae to weights or transitions. Where
the EB formulae (Equation 6.3.2) are used, C is set to the lowest value which gives
all-positive updates for that type of parameter (weights or transitions) multiplied
by 1.1; this value of C' is shown in Table 6.3. For transitions the value of C is
much smaller.

As can be seen from the MMI criterion reported in Table 6.3, the EB optimisation
is slower than the new update for the weights and faster than the new update
for the transitions. Using the (faster) EB optimisation for the transitions seems
to degrade WER, for the weights, the use of the (slower) EB optimisation gives
no consistent difference. Thus, there is no consistent difference in either criterion
optimisation or recognition results between the EB and new update equations.
However, since the new update equations since the update, if it converges, will at
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Update type Training iteration
Weight Trans 0 1 2 3 4
%WER on eval97sub

New New 46.0 44.5 43.7 43.9 43.8

EB New 46.0 44.8 44.1 44.0 43.9

New EB 46.0 44.6 44.3 44.5 44.3
%WER on eval98

New New 46.6 45.4 44.7 44 .4 44.3

EB New 46.6 44.2

New EB 46.6 44.5

MMI criterion / n frames

New New | -0.05446 -0.04634 -0.04057 -0.03616

EB New | -0.05446 -0.04718 -0.04162 -0.03712

New EB | -0.05446 -0.04585 -0.03981 -0.03534

EB Smoothing constant C

for weights or transitions

EB New 0.23 0.16 0.12 0.07 [weight C|
New EB 0.07 0.04 0.02 0.02 [trans C|

Table 6.3: Comparison between new and EB weight/transition updates:
h5train00sub (65h) training, 12 Gauss/state, Gaussian update: EB, E=2

least converge to the correct point; this does not hold true of the EB equations
with altered differentials.

Tables 6.4 and 6.5 show the effect of varying the smoothing constant C' in the
new update for weights and transitions respectively (Note— this C is different
from the C' which appears in the EB equations and which is calculated based
on a fixed formula). C' = co means the parameters are not changed. A smaller
value of C leads to a faster increase in the criterion, and this is reflected in the
critereion values. The standard update of C' =1 for both weights and transitions
seems to be close to the optimal value with respect to WER. Recognition results
on the larger eval98 test set show an insignificant improvement of 0.1% if either
the weights are updated more slowly (C' = 2) or the transitions faster (C' = 0.5).
This is consistent with the observation that the EB update for weights (Table 6.3)
gave a better WER because the weights were changed more slowly.

Note that on the first iteration or two of update a faster speed of weight update
seems to lead to better WER. However these gains are lost on later iterations.
It may be the case that fast weight updates help recognition directly, but cause
problems on later iterations of training because data gets distributed less evenly
among the Gaussians.
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Value of C for... Iteration
Weights Transitions 0 1 2 3 4
%WER on eval97sub
0.5 1 46.0 44.1 43.9 43.7 43.9
1 1 46.0 44.5 43.7 43.9 43.8
2 1 46.0 44.7 43.9 43.9 43.7
00 1 46.0 45.1 44.5 44.0 43.8
%WER on eval98
0.5 1 46.6 44.3
1 1 46.6 44.3
2 1 46.6 44.2
o0 1 46.6 44.3
MMI criterion / n frames

0.5 1 -0.0545 -0.0451 -0.0392 -0.0349

1 1 -0.0545 -0.0463 -0.0406 -0.0362

2 1 -0.0545 -0.0469 -0.0414 -0.0370

00 1 -0.0545 -0.0476 -0.0423 -0.0381

Table 6.4: Effect of varying smoothing constant C' in new update for weights:
h5train00sub (65h) training, 12 Gauss/state, Gaussian update: EB, E=2

6.4.4 Combining the best settings

Combining a “flat-denominator” (E =2) update with a slow weight update (C =
2) and a fast transition update (C' = 0.5) gave an WER of 44.1% on the eval98
test set on the fourth iteration, and 43.8% on eval97sub. This is 0.2% better on
the larger eval98 test set and the same on eval97sub, compared with the standard
EB update with C' = 1 for weights and transitions. This is not significant, so
these changes have not been used for further work— the standard updates have
been retained, with original EB formulation for the Gaussians, and the update
of Section 4.4 for the weights and transitions which is equivalent to the update
of Section 6.3 with C' = 1.

6.5 Conclusion

This chapter investigated various modifications of and alternatives to the stan-
dard optimisation approach for MMI that was previously described in Chapter 4.
Although some of these modifications led to a very slight improvement in WER
on testing, the total improvement was not significant, and the standard update
formulae of Chapter 4 have been used for further work. Experiments by other
authors, describing other modifications to the EB formulae, were reviewed; they
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Value of C for... Iteration
Weights Transitions 0 1 2 3 4
%WER on eval97sub
1 0.5 46.0 44.5 43.6 43.9 43.8
1 1 46.0 44.5 43.7 43.9 43.8
1 2 46.0 44.4 43.8 44.0 43.7
1 00 46.0 44.4 43.8 43.9 43.8
%WER on eval98
1 0.5 46.6 44.2
1 1 46.6 44.3
1 2 46.6 44.3
1 o0 46.6 44 4
MMI criterion / n frames

1 0.5 -0.0545 -0.0462 -0.0401 -0.0359

1 1 -0.0545 -0.0463 -0.0406 -0.0362

1 2 -0.0545 -0.0464 -0.0407 -0.0363

1 o0 -0.0545 -0.0464 -0.0408 -0.0364

Table 6.5: Effect of varying smoothing constant C' in new update for transitions:
h5train00sub (65h) training, 12 Gauss/state, Gaussian update: EB, E=2

also showed that no significant WER gains can be obtained by using alternative
update equations of the kind investigated here.

The exercise of devising an auxiliary function with a linear denominator auxiliary
function was useful as it led to an update very similar to the EB update with
E =1, and with the state-specific smoothing constants set in essentially the same
way, but avoiding the arbitrariness of the formula for setting the Gaussian-specific
smoothing constant Djp,.



Chapter 7

Minimum Phone Error Training

7.1 Introduction

The Minimum Phone Error (MPE) criterion, previously introduced in Chapter 3,
is a smoothed phone transcription accuracy. A related criterion, Minimum Word
Error (MWE), is a smoothed word accuracy. Both criteria consist of an average
of the transcription accuracies of sentences s, weighted by the probability of s
given the model:

R
Furr(A) = Z Z P{(s|O,)RawPhoneAccuracy (s, s,) (7.1)

r=1 s

Px(Or|5)" P(s)"

where Pf(s|O,) is defined as the scaled posterior sentence probability
of the hypothesised sentence s.

22w PA(Or[u)*P(u)*

The function RawPhoneAccuracy (s, s,) equals the number of phones in the ref-
erence transcription s, for file , minus the number of phone errors; in MWE
this is replaced by RawWordAccuracy(s, s,) which is a word-level rather than
phone-level accuracy.

The lattice-based implementation of MPE/MWE which will be described in this
chapter is very similar to the implementation of MMI described in Chapter 5.
Changes to the training algorithm are required at the stage at which statistics are
accumulated from the training data. A similar amount of computing resources
are required as for MMI*.

This chapter is organised as follows. Section 7.2 explains an approximate method
used to optimise the MPE objective function; Section 7.3 discusses a more ex-
act implementation, and Section 7.4 discusses the use of I-smoothing for MPE.
Experimental results for MPE are given in Chapter 8.

Lin both cases, about 0.5x real-time per iteration of training for a typical training setup on
the Switchboard corpus when run on Pentium III processors at 800 MHz.
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7.2 Optimisation of the MPE objective function

The EB update formulae were developed for the optimisation of the MMI ob-
jective function, and were originally proved for that case. The same approach is
not directly applicable to MPE. In the MPE objective function, which is given
as follows in an expanded form,

> PA(Or]5)*P(s)*RawPhoneAccuracy (s, s,)
Z 2w PA(Or[w)P(u)* ’

the factors RawPhoneAccuracy (s, s,) which are multiplied by each sentence like-
lihood in the numerator are not necessarily positive, and the individual fractions
are added together rather than multiplied as in MMI. This makes it difficult to
derive the EB equations in the original way, as in [Gopalakrishnan et al., 1989,
Normandin & Morgera, 1991].

The solution used here is to use an intermediate weak-sense auxiliary function,
based on a sum over phone arcs. The lattice for each training file r is composed
of phone arcs ¢ =1...Q,, each with given start and end times. For each phone
arc g, the likelihood of the speech data from the beginning to the end of the arc
can be calculated; let this be called p(q).

The weak-sense auxiliary function used to make the MPE objective function more
tractable is:

Fupr(A (7.2)

R Qr

Haps(O V) =33 a‘?@f]‘]

r=1 ¢g=1

(A=N)
log p(q) (7.3)

This function Hypgr(A, A') is a weak-sense auxiliary function for Fypr(A) around
A = X, for the following reason: the only change in Fypg(\) as A is changed
comes via the sentence likelihoods p)(O,|s), and the only variables in these that
vary with X are the arc likelihoods p(g). An approximation to Fypr(A) which is
linear in the values of log p(¢) will have the same differential w.r.t A where A = X,
and will therefore be a weak-sense auxiliary function for Fypg(A) around A = X.
The value ;fT%\(’\:’V) is a scalar value calculated for each arc g, and can be
either positive or negative. The two cases can be separated, making the analogy

with MMI clearer:

Hups(A,N) = L, 27, max(0, A24EE |0=2)) log p(q)

» dlog p(q)

Sty Yoz max(0, — F2ure [(0=V)) log p(g), (7.4)

where the first term corresponds to the numerator model in MMI and the second
to the denominator. As for MMI, two sets of accumulated statistics are stored:
one for the numerator, and one for the denominator.
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(For the Gaussian updates the two sets of statistics may be compressed by saving
only their difference). For I-smoothing with MPE, a third set of statistics, the
“mle” statistics, are stored. The “mle” statistics are standard statistics as used
for Maximum Likelihood estimation, and are obtained from a lattice forward-
backward algorithm applied to the lattice of correct sentence (the numerator
lattice in MMI).

The final auxiliary function (without the smoothing term added yet) is

Fupe(\,X) = Y8 39 Sfuen 1 M Fawe(A, N, 7, q) (7.5)

q=1 dlog p(q)

if Fyvre(A, N, 7, q) is understood to be the normal auxiliary function for the arc
likelihood p(q) for arc ¢ from lattice r, as would be used for ML estimation. This
expression is a weak-sense auxiliary function for Equation 7.3, and is therefore a
weak-sense auxiliary function for the MPE objective function.

In storing statistics for updating the MPE objective function, an important def-
inition is:

MPE __ 1 8‘7:.MPE
¢ kdlogp(qg)’ (7.6)

which is the differential of the objective function w.r.t the arc log likelihood
logp(q), for the phone arc ¢, scaled by + which is an arbitrary scale introduced

for consistency with MMI and to sunphfy the calculation of 7)'PF.

Once this value 7MPE is calculated, the statistics needed to optimise the objective
function can eas11y be calculated. In a modification of Equations (5.6) to (5.8)
for MMI, the numerator and denominator statistics are accumulated according
to the following equations for the numerator:

Q e
Yo = )Y Yaim(t) max(0,7,")) (7.7)

Q €
O (0) = D Y Vaym(t) max(0,7,"")O(t) (7.8)
B (0%) = D) Yam(t) max(0, 7O (1), (7.9)

q=1 t=s4
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and as follows for the denominator:

Q e
Yoo = D) Ygim(t) max(0, —7"")) (7.10)

g=1 t=s4

Q &
B(0) = 303 tam(®)max(0, —"H)O() (711

q=1 t=s4
Q &
9;-1,'3,?((’)2) = Z Z Yoim (t) max(0, =" F)O(t)?, (7.12)

q=1 t=s4

where s, and e, are the start and end times of arc ¢, and 7,;m (t) are the occupation
probabilities for Gaussians conditional on the arc being q. This follows from
Equation (7.4), in which arcs with positive 'yév[PE are considered as numerator
arcs, and arcs with negative 'yév[PE are considered as denominator arcs. The
same proof used to show that the MMI objective function can be optimised with
an auxiliary function G(A, X') of the form given in Equation (4.17), applies to
the function Hypr(A, ') of Equation (7.4) which is has the same form as the
MMI objective function. The final auxiliary function G(A, )') is the same for
MPE as MMI and the EB update equations are applied in the same way. The
only difference with MPE is that the statistics are accumulated according to

Equations 7.7 to 7.12 rather than Equations 5.6 to 5.8.

7.2.1 Calculating RawPhoneAccuracy(s, s,) for approximate
MPE

To calculate the statistics for MPE it is necessary to calculate the scaled differ-
ential )'"® of the MPE criterion w.r.t. the log likelihood of each arc. At some
point this will involve implicitly calculating the function RawPhoneAccuracy(s)
for each sentence in the lattice.

The function RawPhoneAccuracy(s) for a sentence s ideally equals the number
of correct phones minus the number of insertions, but an approximation may be
used to avoid the need for a full alignment. The exact form of the function (i.e.,
the number of correct phones minus insertions) could equivalently be expressed
as a sum of PhoneAcc(q) over all phones ¢ in s, where PhoneAcc(q) is defined as
follows:

1 if correct phone
PhoneAcc(q) = ¢ 0 if substitution . (7.13)
—1 if insertion

Since the computation of the above expression requires alignment of the reference
an hypothesis sequences, and this is computationally expensive, an approximation
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Reference | a | b ‘ ¢ ‘
Hypothesis | a | b ‘ b ‘ d ‘
Proportion e 10 08 02 015 085
~1+ (correct:2*e, 10 0.6 -0.6 —-0.85 -0.15
incorrect:e)
A(g) =max of above 1.0 0.6 -0.6 -0.15

Approximated A(s) from above = 0.85

Exact value of raw accuracy A(s): 2corr—1ins= 1

Figure 7.1: Calculating approximated RawPhoneAccuracy

is used as follows. Given a hypothesis phone ¢, a phone z is found in the reference
transcript which overlaps in time with ¢; and if the proportion of the length of 2z
which is overlapped is e(q, 2),

—1+ 2e(q, 2) if z and q are same phone

PhoneAcc(q) = mzax{ —1+ e(q, z) if different phones } - (T14)

This is efficient to compute because it is a purely local function of the hypothesis
and reference phones. The phone z is chosen so as to make PhoneAcc(q) as large
as possible. The expressions in Equation (7.14) represent tradeoffs between an
insertion and a correct phone or substitution respectively, and are a solution to
the problem that a single reference phone might be used more than once by a
hypothesis sentence. In this implementation the reference phone z is chosen from
a lattice encoding alternate alignments of the correct sentence. The expression in
Equation (7.14) can be shown never to exceed the ideal value of Equation (7.13)
provided the reference transcript has a single time alignment, i.e ignoring the fact
of there being alternate paths in the reference lattice. The reference lattice may
have multiple paths due to alternate pronunciations of words.

This approximation is easy to implement in a lattice context and seems to give
good results. Note that unless indicated otherwise all experiments use context-
independent phones for purposes of calculating phone accuracy, as opposed to
matching the contexts as well, since this has been found experimentally to be the
best approach (Section 8.18.2).

Figure 7.1 gives an example of calculating approximated RawPhoneAccuracy for
a single hypothesis and reference transcript. The calculated value (0.85) is com-
pared to the exact value (1) and is slightly less. With a single reference transcript,
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Correct | b . C

b 0.6 d-0.15

Hypothesis
lattice / >
(A(g) shown)

al d-0.15
b -0.15 b-0.177 d-0.177
a-0.15 | | \
| U
dF / d(phone Igprob) — ¢-0.022 No—
a015 — b 0177 d0.177

Better than average path #J Worse than average path

Figure 7.2: Calculating approximated RawPhoneAccuracy in a lattice context

the approximation will always be less than or equal to the true value. An ap-
proximate alignment can be turned into an exact alignment by redistributing the
reference phones among hypothesis phones. A reference phone that is shared can
always be given to one or other of the sharing hypothesis phones without de-
creasing the accuracy: this can be shown by considering the various ways that a
reference phone can be shared and showing in each case which hypothesis phone
it should go to. Unallocated reference phones will be implicitly counted as dele-
tions. Any exact alignment of reference to hypothesis will give an accuracy less
than or equal to the true accuracy; it follows that the approximated accuracy is
always less than or equal to the true accuracy.

Figure 7.2 shows the same process in a lattice context. The correct transcription
may contain alternate paths if alternate pronunciations appear in the dictionary;
the reference phone z may be chosen from any path to maximise the phone
accuracy. The hypothesis/recognition lattice (middle) is shown with the function
PhoneAcc(g) indicated for each phone arc.

The bottom lattice in Figure 7.2 shows the differential of the MPE objective
function w.r.t. the log likelihoods of the different phone arcs (assuming the
three paths in the lattice have equal likelihoods). It does not show how this
differential is calculated, which is described in Section 7.2.2. But it makes clear
a few properties of this differential, such as the fact that it is positive for paths
that are more correct than average and negative for less correct paths; and that
it will sum to zero for all arcs crossing a particular time instant.

To summarise, the approximated phone accuracy PhoneAcc(q) is found for each
hypothesis arc ¢ as follows: for each arc z in the reference transcript which
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overlaps in time with g, let e(g, z) be the number of frames ¢ and z overlap, divided
by the length in frames of z. These values e(q, z) are used in the expression in
Equation (7.14) to calculate the approximated value of PhoneAcc(q).

Silences

Silence and short pause models, are handled as follows: silences are ignored when
they appear in the hypothesis transcript by being given a PhoneAcc of zero, but
appear in the reference transcript where they may be used as the reference phone
z when calculating PhoneAcc(q): hypothesis phones which align to a silence
phone would be counted as substitutions since the hypothesis phone g will never
be silence itself. This was found to work better in terms of test-set performance
than ignoring the silences and short pauses in both reference and hypothesis
lattices (see experiments in Section 8.18.3).

Approximate vs. exact MPE

This approximate method of calculating RawPhoneAccuracy(s) described above
been compared with a more exact technique, and has been found to give slightly
better test-set results than the exact technique on the Switchboard corpus (al-
though worse for Wall Street Journal). The exact technique is described in Sec-
tion 7.3. Experiments comparing the two are given in Section 8.15, and show no
clear difference in performance.

7.2.2 Differentiating the MPE objective function for ap-
proximate MPE

The key quantity required in MPE training is:

mpe _ 1 0FwpE
! x 0logp(q)

for each arc ¢, which is the scaled differential of the MPE objective function
w.r.t. each arc log likelihood. This is analogous to to an occupation probability
that would arise in ML or MMI training; if positive, it is treated for purposes
of accumulating statistics, as an MMI numerator occupation probability and, if
negative, an MMI denominator occupation probability.

This quantity can be found using the formula:

Yo = e(e(q) — Chyg), (7.15)

where v, is the likelihood of the arc ¢ as derived from a forward-backward likeli-
hood computation over the arcs, c¢(q) is the average RawPhoneAccuracy of sen-

tences passing through the arc ¢, and c,, is the average RawPhoneAccuracy of
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Reference = ‘‘cat’”’

[NIPSEI h a’ '
C
c(g)=2 cr
C(Q)ZZ c(q)=2 s’
c(q)=1.5
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c(g)=1 c(g)=1

Figure 7.3: Example showing values of ¢(q)

all the sentences in the recognition lattice for the r’th training file. (All these
averages are weighted by the sentence likelihood).

An example giving values of ¢(g) is shown in Figure 7.3. As mentioned, c(q) is
the average RawPhoneAccuracy of sentences passing through the arc ¢, weighted
by probability. This example assumes that the two alternate paths are equally
likely, i.e. 7, equals 0.5 for the top and bottom paths. Arcs on the top path
have a c(q) of 2, which equals the number of correct phones (3) minus 1 for one
insertion error. Arcs ¢ on the bottom path have ¢(q) = 1 because there are two
errors. In this case, the expression 1)'*® = +,(c(q) — c},,) equals 0.25 for the top
arcs and -0.25 for the bottom arcs, and zero for the ending arc. These values
(£ 0.25) are the largest values of yMP® possible where the alternative sentences

q
do not differ in correctness by more than 1. The values of YYF® would become

q
smaller if the sentence were less evenly matched in likelihood.

The expression for )" given in Equation (7.15) can be demonstrated to be
correct as follows. The MPE objective function,

Frpn(N) = i > P2(0;|s)*P(s)*RawPhoneAccuracy (s, s )
= 5. A0 P () ’

can be split up into those sentences s which include a particular arc ¢ (¢ € s)
and those which do not. Abbreviating RawPhoneAccuracy(s, s,) to A(s, s;),

s PO P Als, 5,) + 5010151 P s As, 51)
D D N (AT (Y SR (AT S

(7.16)

Differentiating this w.r.t. the arc log likelihood log p(gq) is possible by considering
that for a sentence s which includes arc g (¢ € s) the differential of its likelihood
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PA(O,]s)* w.r.t. logp(q) equals £py(O,|s)* and for other sentences (¢ & s) the

differential of px(O,|s)"* w.r.t logp(g) is zero, so by the product rule for fractions
( da _ Oaldz a6b/8:1:)

b — b b?
0Fupr(A) . HEs:qespx(OrIS)"P(S)”A(s,sr)
alogp(q) o Zup)‘((jr‘u)ﬂP(u)ﬂ
3. PA(Or|8)"P(s)"A(s,5r) 2siqes PA(Or|s)"P(s)"
A S AN Y SN A 2 N R
The expression is equal to v,(c(q) — ¢,,) of equation (7.15), considering that
the factor x cancels with the 1 in the definition )PE = 1.2 uPES, that the

2 s:qcs PA(Or|5)"P(s)
>0 PA(Or [u)= P (u)"
) and that the average correctness of arc g equals

, that the average correctness

occupation probability v, equals

> s PA(Or]8)" P(s)* A(s,sy
Chyg €quals & E:px (O ) Pla)"
> s:qes PA(Or|s)"P(s)"

2 ugeu PA(Or[u) P(u)s

The value of ¢(q), which is the (weighted) average value of RawPhoneAccuracy(s)
for sentences s including the phone arc g, is calculated as follows, in an algorithm
similar to the forward backward algorithm.

Computation for approximate MPE

Let the symbols o, and 3, denote the forward and backward likelihoods used in
the forward-backward algorithm to calculate occupancies v, = Zgg‘; The symbols
o, and f3; are used to define analogous quantities used in calculating average
accuracies: afl represents the average accuracy of partial phone sequences leading
up to ¢ (including ¢ itself), and B3, represents the average accuracy of partial
phone sequences following ¢, so that the average accuracy c(q) of phone sequences

including g equals oy 3;. These quantities are calculated as follows:

forg=1...Q
if ¢ is a starting arc (no transitions to q)
Qg = p((])'e
a,, = PhoneAcc(q)
else
Qq = Zr preceding q O[rt;qp(q)”
= et + PhoneAcc(q)
end
end
forg=0Q...1

if ¢ is an ending arc (no transitions from q)
Bo=1
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else
— K K
Bq - Zr following ¢ tqrp(/r) BT‘
/BI — Er following qtg,p(r)”ﬁr(B;—FPhoneAcc(r))
q Er following qtgrp(r)nﬂr

end
end
cr — Zarcs q at end of lattice a;aq
avg Zarcs q at end of lattice Qg
T = Zarcs q at end of lattice Qq
forg=1...Q
_ 2Bq
Ye= %
_ ! !
c(q) - aq + /Bq
MPE _ T
Yq - 'Yq(C(Q) o Cavg)
end

where PhoneAcc(q) is the (approximated) contribution of phone ¢ to the sentence
correctness, p(q) is the likelihood of the data aligned to phone arc ¢, derived
from an unscaled forward-backward probability calculation within g, ¢, are lat-
tice transition probabilities derived from the language model, and the notation
> preceding g indicates summation over phone arcs r that directly precede ¢ in the
lattice. The scaled differential w.r.t. the arc log likelihood can then be calculated
according to the formula 7)""® = v,(c(q) — ¢4,,). This formulation assumes that

the arcs are sorted in order of time.

7.3 Exact implementation of MPE

Problems with approximated MPE

The above implementation uses an approximate value for PhoneAcc(q). Not only
does the approximation result in an underestimate of the true phone accuracy of
a hypothesis sequence, but the process gives a higher accuracy to paths matching
longer pronunciations of words (if there is a choice). The highest possible value
of RawPhoneAccuracy(s) for a hypothesis s equals the length in phones of the
correct sentence, and a choice between different correct sentences arises because
there are alternative pronunciations of words. Thus, the approximate technique
gives an unsatisfactory preference to longer reference pronunciations.

A more exact implementation of MPE has been devised. This is referred to as
exact MPE.
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d e [null]

Figure 7.4: Sausage representation of numerator

7.3.1 Sausages strings

Firstly, the numerator lattice encoding alternative pronunciations is represented
as a string of phone “sausages”, not including silences or short pauses. (A similar
idea in the context of word hypotheses was introduced in [Mangu et al., 2002]).
The idea is shown in Figure 7.4. The length P of the the phone sausage string
equals the summed length of the longest pronunciations of words; each position
p =1...P in the sausage string contains a number of alternate reference phones
Tpa, for alternatives a = 1...n,. In addition each position may possibly contain
an “empty” phone, as seen in the next-to-last position of Figure 7.4. The presence
of an empty phone in position p is indicated by a Boolean value e, being true.
In this implementation, if a word has alternate pronunciations these will start
at the same position in the sausage string and if some pronunciations are longer
than others empty phones will appear towards the end of the word (this case is
shown in Figure 7.4).

7.3.2 Raw Error

Once the reference sausage string is defined, the alignment of the hypothesis
sentence will be implicitly calculated in a process which calculates the “MPE
occupancy” 'y;“PE. The raw accuracy of a hypothesis sentence s can be calcu-
lated as P — RawPhoneError(s), where P is the length of the sausage string
and RawPhoneError(s) is the number of phone errors in s; this gives a better
consistency between hypotheses of different length since the criterion is now re-
lated to the error in the sentence. The negated error —RawPhoneError(s) is now
used in lattice calculations in the same way as RawPhoneAccuracy(s) was used
previously, except that for purposes of reporting the criterion the sausage string
length P is added to it.

The raw error consists of the total number of substitutions, deletions and inser-
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tions. The negated raw error which is actually used consists of -1 for a substitu-
tion or deletion, plus I for an insertion, where I might equal -0.85 or -0.9. This
introduces a flexibility which can avoid putting too much emphasis on correcting
insertions of phones, which otherwise can lead to a large reduction in the test set
insertion/deletion ratio.

Calculating sentence Raw Error for a single sentence

The example of calculating negated Raw Error for a single sentence is considered
here in order to clarify the lattice algorithm which will be needed.

The traceback algorithm needed to find the best path is viewed as a forward
backward type algorithm over the sentence, in which each of the phones in po-
sitions ¢t = 1...7T in the hypothesis sentence is considered as a separate phone
depending on the starting position p = 1...P 4 1 of the reference phone it is
aligned to. A transition from one phone to the next, with given positions p for
the two phones, only has nonzero probability if the position of the first phone
is the best choice, i.e. gives the best error value up to and including the next
phone. The process will be described exactly below.

The negated error up to and including the #'th phone, there the #'th phone is
aligned to reference position p, is called o/(t,p). This is demonstrated in Fig-
ure 7.5, where o/(t,p) is indicated next to each phone. A similar error 5'(¢, p) is
the error from but not including ¢, p to the end of the sentence. Two new quan-
tities are introduced which will prove useful later. a(t,p) is the probability that
the current position appears in the backtrace of the file including information
gathered up to and not including the present phone, and is always 1 in this case
(it becomes useful when alternate transcriptions with different probabilites are
considered). [(t,p) is a probability from the present phone to the end, which
equals 1 if there is a path from ¢, p to the end of the sentence 7'+ 1, P 4+ 1, and
zero otherwise.

The negated sentence error o/(t,p), the same quantity shown in Figure 7.5, is
calculated as follows:

forp=1...P+1,
o/(1,1) = —err(1,1,p)
end
fort=2...T
forp=1...P+1,
o (t,p) = max; 1] o/ (t = 1,p) —err(t, p', p)
end
end
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Figure 7.5: Recursive calculation of phone error, showing accumulated error
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The function err(¢, p1, p2) is the error (insertions, deletions and substitutions) due
to the hypothesis phone at time ¢, aligned between reference positions p; and ps
(these are positions p as indicated on the y-axis of Figure 7.5). If p; = p,, the
hypothesis phone is counted as an insertion, and if p; < py the error is very large
to indicate an invalid transition. An efficient implementation of this function is
explained in Section 7.3.4.

The backward part of the algorithm calculates the backward error 8'(¢, p) which
is the negated error from position ¢, p to the end of the sentence not including
phone t, i.e. the error after ¢t assuming phone ¢ ends at position p. In addition,
the forward probability a(t), is defined, which is a shorthand for the notation
a(t, p) as it is bound to be the same for all p; and a backward probability 3(t,p)
which in this case is either zero or one.

a(t)=1for all ¢
B(t,p) < 0 for all ¢, p

B(T,P+1)«1

fort=T—1...17% Calculate backward probabilities...
forp=1...P+1
p' = startof(¢t + 1, p)
B(t,p') « B(t,p') + B(t+1,p)
end
end

forp=1...P+ 17 Calculate backward correctness...

B'(T,p) = —err(T,p, P)
end

fort=T-1...1
forp=1...P+1
B(t,p) = maxEHL §(t + 1,p') —erx(t + 1,p,7)
end
end

where

startof (¢, p) is the best starting position of phone t given that it ends at p,
which corresponds to the position at time ¢ — 1 of the traceback line in
Figure 7.5, starting at position ¢, p.

startof (¢, p) = argmaxf;ga(t —1,p') —err(t,p',p)
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err(t, p1, p2) is the error contributed by hypothesis phone ¢, given that it
aligns between positions p; and p, as in Figure 7.5.
see Section 7.3.4 for implementation details.

and variables are as follows:

B'(t,p) is a negated error from ¢, p to the end of the sentence.

a/(t,p) is a forward negated error up to position ¢, p.

B(t,p) is 1 if traceback from the end as in Figure 7.5 passes
through the current position and 0 otherwise.

a(t) = a forward probability, always 1 in this case

With these quantities defined, average sentence error can be calculated at an
arbitrary point ¢ in the hypothesis sentence, as 211211 a(t)B(t, p)(/(t,p)+6'(t, p))-
The ability to calculate this at any point in the sentence is important, as it will
be used in the lattice version of the algorithm to calculate the average correctness

of sentences passing through a local phone q.

This algorithm can be viewed as a forward-backward algorithm if the propagation
of errors is considered in terms of transition probabilities. The transition between
position p of phone ¢ and position p’' of following phone ¢’ is 1 if the previous
position p is the best choice, i.e. leads to the best phone error, and zero otherwise.

7.3.3 Calculating Raw Error in a lattice context.

The algorithm described above can be generalised to a lattice representation of
sentences. The resulting algorithm is similar but not identical to the effect of
individually aligning each sentence in the lattice. The alignment obtained is a
constrained alignment in that the start of each phone in the lattice can in general
align only to a single position p = 1... P + 1; there is not complete freedom to
have different positions for different contexts.

The forward part of the algorithm calculates a forward probability a(q) for each
arc, including the the probability p(q) of the arc ¢ itself; and the forward error
a/(g, p) which includes the error up to but not including ¢ itself.

forg=1...Q,
if ¢ is a starting arc (no transitions to q)
forp=1...P+1
a(g) = p(g)”
a'(g,p) = err(q,1,p)
end
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else
forp=1...P+1

a(q) = Zq’ preceding ¢ a(ql)tglqp(Q)K
al( ) _ Eq’ preceding q(maxflii a’(qlapl)_err(qﬂ’l ,p))a(ql)t:;,qp(q)n
q’p - Eq’ preceding qa(q’)t:;,qp(q)”
end
end

end

Note that the maximum in the expression Zq, preceding maxf,i} o (¢, p')—err(q,p', p)

is taken separately for each preceding arc ¢'. This allows slightly more freedom
in alignment than if the maximum had been taken outside the sum.

The backward part of the algorithm is more complex because the backward prob-
abilities may not be the same: as seen in Figure 7.5, the forward probability to
each position 1...P + 1 is always the same as all positions connect back to the
start; but not all positions connect to the end so the backward probability may
be zero. The algorithm is as follows. Note that 3(q, p) stores the likelihood from
the end back to but not including the arc ¢, and '(q,p) stores the correctness
back to and not including the contribution of ¢ itself. This algorithm visits each
arc g and propagates the backward likelihood and error back from ¢, rather than
visiting each arc ¢ and calculating the backward likelihood and error of ¢g. This
is for reasons of efficiency.

QQ = #arcs in lattice
P = #sausage string positions

B(q,p) < 0 for all ¢, p
B'(q,p) + 0 for all ¢, p

forg=@Q...1
if ¢ is an ending arc (no transitions from ¢) then
B(g,P+1)+0
B(g,P+1)+1
else
forp=1...P+1
if B(g,p) >0
for ¢' in arcs preceding ¢
p' = startof(q¢', ¢, p)
Bemp < tg,p(0)"B(q, )

Bimp < B'(q,p) — erx(q, v, p)

B'(d'p')B(d':p") + Bimph
YA, "(¢'0")B(d" ") + BimpBtmp
p (q ,p) < B(4".p')+Btmp *
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B(d,p") < B(d',p') + Bimp
end
end
end
end
end

where

startof(¢’, ¢, p) is the best starting position of phone q given that it ends at p,
considering only the sentences passing through the previous arc ¢':

startof(q', ¢, p) = argmax;*1a/(¢, p') — err(q,p', p)

err(q, p1, p2) is the error contributed by hypothesis phone arc ¢, given that it
aligns between positions p; and p, as in Figure 7.5; see
Section 7.3.4 for implementation details.

A potentially confusing part of this algorithm is the part involving Bump and B, -
The quantity §'(¢',p') is an average backward error, weighted by the probability
of sentences passing through ¢'. Let us suppose some arc following arc ¢’ is q.
It is necessary to weight by the backward probability t}, p(q)*B(q, p) in order to
calculate this weighted average over sentences. The expression t p(q)"5(q,p)
includes the backward probability (g, p) of the following arc ¢, plus the data
likelihood of ¢ and the transition probability. The value Bymp stores this back-
ward likelihood contributed by the arc g being considered, and f;,,, stores the
correctness contributed by this particular following arc. If the backward likeli-
hood (g, p) is zero for a particular ¢ and p, which will usually be the case as
only some positions connect to the end, 5'(q, p) will never be calculated and will
remain zero.

The correctness ¢(q) of an arc ¢ is given by:
> per @(9)B(a;p)((g,9) + B'(¢,p))
p -
St a(q)B(q, p)

The total error of the sentence c,,4 is given by the sum over ending arcs g¢:

roo_ Zq in ending arcs a(Q)a,(q, P+ 1)

c(q) = (7.18)

Copg = , (7.19)
i Zq in ending arcs a(q)
or equivalently the sum over starting arcs (useful as a check):
P+1
A Zq in starting arcs Zp:+1 B(q’p)a(q)(ﬁl(q’p) + al(q’p)) (7 20)

- P+1
e Zq in starting arcs Ep:+1 ﬁ(q,p)a(q)
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Defining z as the total (scaled) probability p(O,) of the speech file given the
lattice, i.e.

T = Z a(q) (7.21)

g in ending arcs

the occupation probability for an arc ¢, which would normally given by w, is

P+1
now given by M

w.r.t. arc ¢ is given by:

. The scaled differential of the MPE objective function

Yoo = Ya(e(q) = i)

= > M(ﬁ’(q,p) + /() — Civg) (7.22)

7.3.4 Error from individual hypothesis phones

The function err(q, p1, p2), required in the algorithm described above, gives the
contribution to the sentence error from phone arc ¢ beginning and ending in
positions p; and p, of the sausage string, with these positions being between 1
and P + 1 as shown in Figure 7.5. Note that there are P sets of phones in the
sausage string; the positions that vary between 1 and P + 1 refer to the points at
the beginning and ends of the sets of phones. Let the italicized “position” refer
to the actual sets of phones p = 1...P in the sausage string and un-italicized
“position” refer to the locations p = 1... P+1 at the beginning and end of these
sets of phones.

As mentioned in Section 7.3.1, each position indexed by p (p = 1...P) has n,
alternate phones r,, for a = 1...n,, and if the Boolean value e, is true then
sausage string position p also contains an “empty phone”, i.e. a transition with
no phone associated with it, due to shorter pronunciations of words.

The error err(q, p1, p2) is calculated as follows. Define d as the number of potential
deletions, i.e. the number of set positions in the range p = p; ...p2 — 1 which do
not contain an empty phone (—e,). Define the condition corryenempty as true iff
the phone of arc ¢ matches one of the sausage string positionsp = s,...s, —1 not
containing an empty phone (—e,), and corrempty if it matches one of the positions
containing an empty phone.

if g is a silence phone, or another non-scored phone
if ps < py
err(q, p1,p2) = oo (path not allowed)
else
err(q, p1,p2) = d (return the number of potential deletions)
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end
else

if pa <py

err(g, p1,p2) = oo (path not allowed)
else if d =0 and corrempiy

err(q, p1,p2) = 0 (correct phone, no deletions)
else if d =0 and —corrempiy

err(q,p1,p2) = I (e.g., 0.9 or 1: i.e. one insertion)
else if d > 0 and —corryonempty

err(q,p1,p2) = d — 1 (d — 1 deletions, 1 correct)
else (d > 0 and —COITponempty )

err(q,p1,p2) = d ( d — 1 deletions and 1 substitution; or d deletions)
end

end

Note that this algorithm assumes that I < 1, as the variable I was introduced
only in order to reduce the significance of insertions.

Efficiency for exact MPE

The algorithm as described in the last few pages is not very efficient, because for
each phone ¢ there are two nested iterations over the position p = 1... P, inside
which is a call to the function err(g, p,p’) which itself takes linear time in the
difference between p and p’. Therefore, the algorithm without pruning can take
time O(QP?). There are three ways that this is sped up.

e The inner loop over p is combined with the calculation of the function
err(q,p, p') to make each call to err(q, p,p’) O(1) rather than O(P).

e The time information in the numerator (correct sentence) and denominator
lattices is used to obtain lower and upper limits on the positions p which
each arc ¢ might occupy, and these limits are extended by (in this case) a
margin of 4 on each side so that the iterations over sausage string position
sp never include more than about 10 different values of p.

e All lattice arcs which are less likely than a specified limit (around 0.0002)
are pruned away.

These optimisations taken together make the additional calculations used in exact
MPE an insignificant fraction of the total calculation of discriminative training,
much of which is taken up in doing within-arc forward-backward calculations to
calculate the within-arc data likelihoods p(q) for each q.
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7.3.5 MPE optimisation: Summary and further details

As explained above, during the alignment (or Estimation) phase of MWE/MPE
optimisation two sets of statistics are gathered: ~jm®, 622(O) and @5 (0O?)
which correspond to the numerator statistics of MMI, and a similar set of statistics
with the superscript “den” which correspond to the denominator statistics of
MMI. These are both derived from a single lattice of recognised training data
in a process which also requires the correct transcription in a phone-marked
lattice form for purposes of calculating correctness of phones. The application
of the technique of I-smoothing to the update process requires a third set of
statistics, which are written with the superscript “mle”. These are derived from
the alignment of the correct utterance in the same way as for ML estimation
(or for the numerator of MMI training). Transition statistics are also required
to update the transition matrices; rows of the transition matrix are updated as
for Gaussian weights, as described in Section 4.4. The method of accumulating
the transition statistics has not been described here but it is straightforward by
analogy with MLE training, and involves a sum over arcs very similar to the one

used for Gaussian occupation counts in Equations 7.7 to 7.12.

In the algorithm described in Section 7.2.2, the value of v)™"" = v,(c(q) — ¢j,) is

accumulated for each phone arc ¢ in the lattice; but for reasons of efficiency,
in the implementation used the sum of the value of 7)™* over all arcs of a
particular phone HMM with a particular start and end time, are added together
and the arc is then treated as a single arc for purposes of accumulating data
(a similar optimisation is used for calculating the within-arc likelihood p(g) for
such duplicated arcs). This will sometimes affect the statistics accumulated if the
values of v,"" for that identical group of arcs differ in sign, but will not affect

the fixed point of the update formula.

With MPE more iterations are generally required before the lowest WER is
reached, than for MMI training. Around 8 iterations are generally required with
the smoothing constant E set to the normal value of 2, as opposed to the MMI
case where optimal WER may be reached after around 4 iterations. (A value of
E =1 or E =2 is generally used for MMI).

For diagnostic purposes, the value of the MPE criterion is reported relative to
the number of phones in the reference transcript. The value of cay, (i.e., the MPE
criterion for a given file) is summed over all files, and this value is divided by the
total number of phones in all the reference transcripts (this might involve making
an arbitrary decision about which reference pronunciations to use). The result
will be less than 1, and is comparable to the accuracy on the training data. For
exact MPE, the criterion reported is the sum of sausage string lengths P plus
the summed average negated errors c,,,, all divided by the sum of sausage string

lengths P. This will give a value between 0 and 1.
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7.4 I-smoothing for MPE

I-smoothing (Section 4.3) is a way of obtaining smoothed estimates of discrimi-
natively trained means and variances, using the ML statistics as the center of a
prior. It is implemented in the case of MMI by increasing the counts of the ML
(numerator) statistics, while leaving the data averages the same (Equations 4.24
to 4.26). In MPE training, the numerator statistics are not the same as the ML
statistics, so a third set of statistics have to be gathered using the correct sen-
tence model as for ML training; these are denoted by the superscript “mle”. The
following changes to the statistics are made prior to the Extended Baum-Welch
update, replacing Equations 4.24 to 4.26:

Vim = Yim T (7.23)
num num T mie
im (0) = 07(0) + — 05 (0) (7.24)
jm
/mum num T mie
im

A similar change is required to the equations for smoothing of weights and transi-
tions, which is discussed for the MMI case in Section 4.4.1. However, experiments
reported in Section 8.18.1 show that this can be neglected as it makes no differ-
ence in practice.

I-smoothing is equivalent to combining the objective function with the log prior
distribution equal Q(77, 7¥ iprior; 7" (O sior + HMaior) | jm, O5m) for each Gaussian m
of state j (considering only one-dimensional Gaussians for simplicity), where fprior
and o2;,, will equal the Maximum Likelihood estimates of the parameters of that
Gaussian, 77 is a value set by hand (typically 50) and Q(77, 77 tprior, 77 (O'grior +
14250 ) |14, 0°) s the log likelihood of 77 points of data drawn from a distribution
with mean fiprier and variance o2,

I-smoothing is discussed more thoroughly in Section 4.3.2. As reported in the
following chapter, the use of I-smoothing (i.e. priors over Gaussian parameter

values) is essential if MPE is to give improvements over MMI training.
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Chapter 8

Experiments with MPE Training

This chapter presents experiments relating to MPE training, including compar-
isons with MMI. The experimental conditions are as given in Section 5.3.1.

Section 8.2 compares MPE and MMI training. Section 8.3 investigates the effect
of the size of training lattices. Section 8.4 investigates how the improvement
from MPE training changes with size of training set. Section 8.5 investigates
how the improvement changes with changing HMM set complexity. Section 8.6
investigates how improvement changes in general as the ratio of data to HMM
set size changes. Section 8.8 investigates the optimal value of the probability
scale k. Section 8.9 investigates the optimal speed of training, as controlled by
the smoothing constant E. Section 8.10 investigates the best language model to
use for the training lattices. Section 8.12 investigates the optimal value of the
I-smoothing constant 7. Section 8.13 investigates the effect of doing I-smoothing
on a dimension-specific basis. Section 8.14 examines the possibility of having the
smoothing constant F varying with iteration, which is suggested by analogy with
Generalised Probabilistic Descent (GPD). Section 8.15 compares exact and ap-
proximate MPE. Section 8.16 compares MWE and MPE training. Section 8.18
reports work on miscellaneous other details of MPE training. Section 8.19 dis-
cusses results on the combination of discriminative training with other techniques.

8.1 Experimental conditions

Experiments are performed on the Switchboard, North American Business News
(NAB, also known as Wall Street Journal), and Broadcast News (BN) cor-
pora; and in a few cases on the Resource Management corpus. Experiments
on Switchboard use sets of training data of size 265 hours (h5train00), 68 hours
(h5train00sub) and 18 hours (minitrain). Broadcast News training was with a
72 hour subset of training data and NAB training used the 66 hours of chan-
nel 1 (close-talking microphone) training data. Experiments on the Resource

109
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Management corpus used the 3.8 hours of speaker-independent training data.

Experiments use gender independent, mixture-of-Gaussian HMMs with cross-

word state-clustered triphones. The input data is Mel-Frequency Perceptual Lin-

ear Prediction (MF-PLP) coeflicients, which are like cepstral coefficients but de-

rived from a process involving Mel spectrum warping and linear prediction [Hermansky, 1990],
with delta and delta-delta coefficients, 39 dimensions in all. Resource Manage-

ment experiments used standard Mel-frequency cepstral coefficients (MFCC).

There are about 6000 tree-clustered states per HMM set for the standard Switch-
board, Broadcast News and NAB systems with 12 Gaussians per state for NAB,
BN and the 68-hour subset of Switchboard, h5train00Osub, and 16 Gaussians per
state for the 265-hour h5train00 training set on Switchboard.

Testing for Switchboard experiments is on the 1998 DARPA Hubb evaluation
data set (eval98), about 3 hours of data; some additional tests use a subset
of the 1997 evaluation test set (eval97sub) which is about 1 hour long. Error
rates for NAB are given for the 1994 Hubl development and evaluation test sets,
csrnabl_dev and csrnabl_eval. Test-set results for NAB experiments are given
for the combined devalopment and evaluation from the 1994 Hubl evaluation,
50 minutes in total. Test-set results for BN experiments are obtained using the
1996 “partitioned evaluation” development test data, which is about 2.1 hours
long. Results for Switchboard and NAB are obtained with lattice rescoring of
lattices obtained using ML models, for speed; results for BN are obtained using
single-pass decoding.

See Appendix A for a more complete description of the experimental setup, in-
cluding sizes of the smaller HMM sets used for RM experiments and the Minitrain
subset of Switchboard.

8.2 MPE vs. MMI

This section compares three techniques: MMI, I-smoothed MMI and MPE. The
techniques are tested on four different corpora: Switchboard, Broadcast News,
North American Business News (NAB), and Resource Management.

8.2.1 Experiments on Switchboard

Table 8.1 shows both the training and test WERs for training on a) the 68 hour
and b) the full 265 hour training set for standard MMIE, MMIE with I-smoothing
and MPE with I-smoothing. In both cases, the test-set WER varies according to
the relation I-smoothed MPE < I-smoothed MMI < MMI. For larger amounts of
data (not Minitrain), MPE gives the greatest reduction in training set WER on
the unigram lattices on which the system is trained. However, it does not give
as large a reduction in training set WER as MMIE when tested with a bigram
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Training Type WER Training Subset WER Test
(training iteration) Full bg Lat bg  Lat ug | eval98 eval97sub
MLE baseline 26.3 26.0 41.8 46.6 46.0
MMIE E=2,71=0 (4) 18.6 19.4 30.1 | 44.3 43.9
MMIE E=1,71=200 (6) 19.7 20.3 32.2 43.8 43.1
MPE E=2,71=50 (8) 20.6 20.7 27.9 43.1 42.1

(a) h5train00sub, 68h subset

Training Type WER Training Subset WER Test
(training iteration) Fullbg Lat bg Lat ug | eval98 eval97sub
MLE baseline 30.1 29.8 47.2 45.6 44 4
MMIE E=2,71=0 (8) 23.2 23.7 37.7 | 418 41.2
MMIE E=2,7'=100 (8) 41.6 41.0
MMIE E=1,7/=200 (8) | 22.2 23.0 358 | 414 405
MPE E=2,7'=100 (8) | 23.9 23.9 344 | 4038 39.8

(b) h5train00, full 265h train

Table 8.1: Training & test WERs for MMIE, I-smoothed MMIE and MPE for
(a) 68 hour and (b) 265 hour training sets.

(a) Minitrain, 18h subset (12 Gauss/state system)

Training Type WER Training Subset | WER Test
(training iteration) | Lat bg Lat ug eval97sub
MLE baseline 25.6 38.29 50.6
MMI, E=2 (4) 17.80 24.69 50.2
MMI, E=2, r=100 (6) | 19.45 28.49 49.6
MPE, E=2.0,r1=100 (8) | 20.31 25.50 48.1

Table 8.2: MMI vs. I-smoothed MMI and MPE using unigram training lattices

on Switchboard: Minitrain.

language model; this shows that MPE may be more specific to the language
model used, at least as far as its effect on the training set error is concerned.

Table 8.2 shows experiments on the Minitrain subset of Switchboard which con-
firm the sequence MPE < I-smoothed MMI < MMI as regards the test-set WER.

8.2.2 Experiments on Broadcast News

Table 8.3 compares the three objective functions on the Broadcast News training
corpus. In this case I-smoothed MMI is only slightly better than MMI, but MPE
gives twice as much improvement, a significant difference.
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Train setup (# iters) FO F1 F2 F4 F5 FX |Avg
MLE 11.6 26.2 38.7 24.6 24.8 554 |29.6
MMI E=1, 7/=0 (4) | 12.0 244 345 228 234 518 |27.9
MMI E=1, 71 =100 (4) | 11.1 244 356 22.8 22.6 52.7|27.8
MPE E=2, 7/ =50 (8) | 10.6 22.9 33.7 21.4 228 48.9| 26.2

11.5%

Table 8.3: Comparison of discriminative training criteria on Broadcast News.

8.2.3 Experiments on Resource Management

Test set Relative
Criterion used (iter) feb’89 feb’91 sep’92 oct’89 | all | Improvement
MLE 2.9 3.0 6.8 3.8 |41 -
MMI E=2, /=0 (4) | 28 26 64 35 |38 7.5%
MMI E=2, 71=100 (4) | 2.7 2.9 6.5 3.5 139 5.0%
MPE, E=2, 7'=50 (6) | 2.8 2.8 6.4 3.8 |4.0 2.5%

Table 8.4: Comparison of discriminative training criteria on Resource Manage-

ment.

Table 8.4 gives test-set results for MMI, I-smoothed MMI and MPE training on
Resource Management. In this case MPE gives less improvement than MMI.
As discussed in Section 8.6, this result is not surprising since the amount of
improvement from MPE is related to the amount of training data available per
Gaussian. There is very little training data available per Gaussian for this HMM
set size on Resource Management, and at this ratio of training data to Gaussians
MPE normally gives little or no improvement (see Section 8.6).

%WER avg rel
Criterion used (iter) csrnabl_dev  csrnabl_eval avg | % impr
MLE 12-mix, baseline 9.34 9.80 9.57
MMI 12-mix, ug, E=1 (4) 8.80 9.40 9.10 | 4.9%
MMI 12-mix, ug, E=1, 7/=100 (4) 8.89 9.51 9.20 | 4.0%
MPE 12-mix, ug, E=2, /=50 (8) 8.70 9.29 899 | 6.3%

Table 8.5: Comparison of discriminative training criteria on NAB.
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Lattice Lattice Prune
Ident Depth  Thresh
Baseline 124 -
Pruned-1 34 100
Pruned-2 8.4 50
Pruned-3 4.8 25

Table 8.6: Characteristics of different denominator lattices used for h5train00Osub
training.

8.2.4 Experiments on NAB/Wall Street Journal

Table 8.5 shows test results for models with 12 Gaussians per state trained and
tested on the clean speech channel (Channel 1) of the NAB database. As before,
MPE outperforms MMI (but not significantly; the 95% significance interval is
about 0.3% (see Table 5.1). In this case, I-smoothing with MMI does not improve
results relative to MMI.

8.2.5 Summary of comparisons of MPE and MMI

In summary, on the three larger corpora where there is a reasonably large amount
of training data for each Gaussian to be trained, MPE gives an improvement over
MMI. The difference between MPE and MMI is explored more quantitatively in
Section 8.6.

8.3 Effect of lattice size

In order to test the effect of lattice sizes for MPE training, the lattices from
the Switchboard 65h-trained (h5train00sub) system were further pruned to three
different levels, using pruning beams of 100, 50 and 25 (in log, units) respectively.
The depths of these lattices have been given in Table 5.8.

Table 8.7 shows the effect of varying the pruning of lattices used for MMI and
MPE training. In both MMI and MPE training, a reduction in lattice size de-
grades performance, but MPE is less sensitive to a reduction in lattice size.

8.4 [Effect of training set size

An experiment was performed in which a small HMM set (6 Gaussians/state, 3088
states) which was initially trained on the 18h Minitrain subset of Switchboard
data, was trained on widely varying amounts of data from 1.125h to 265h, to
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0

Iteration
1 2 3 4

Degradation
(it 4)

MMI unigram, k = 1/12, E=1, Baseline | 46.6
MMI unigram, x = 1/12, E=1, Pruned-1 | 46.6
MMI unigram, £ = 1/12, E=1, Pruned-2 | 46.6
MMI unigram, k = 1/12, E=1, Pruned-3 | 46.6

449 442 443 444
449 443 444 446
449 443 449 458
45.0 44.6 455 47.0

0.0
+0.2
+14
+2.6

0

2 4 6 8

(it 8)

MPE unigram, k = 1/12, E=2, Baseline | 46.6
MPE unigram, k = 1/12, E=2, Pruned-1 | 46.6
MPE unigram, k = 1/12, E=2, Pruned-2 | 46.6
MPE unigram, k = 1/12, E=2, Pruned-3 | 46.6

44.3 43.6 43.3 43.1
443 43.6 43.2 43.1
446 440 43.6 43.5
447 444 443 443

0.0
0.0
+0.4
+1.2

Table 8.7: Effect of varying lattice size on switchboard: %WERs on eval98

# Amount of training data

its|1.125h 2.25h 4.5h 9h 18h 68h 265h
Avg Frames/Gaussian 22 44 87 174 349 13205150
Gauss/Hour 16k 8k 412020601030 272 70
Original HMM set (trained on 18h) 57.6
MLE 4| 778 67.3 62.0 59.3 57.6 55.9 55.7
MMI(bg, E=2) from 18h HMM set 4| 58.9 58.0 58.1 57.1 56.7 54.3 54.0
MMI(bg, E=2) after ML 4| 80.6 69.2 63.2 59.4 56.9 53.7 53.2
MMI(ug, E=2) after ML 4| 80.8 69.2 62.7 59.6 56.9 53.4 52.6
MMI(ug, E=2,7 —100) after ML 6| 78.2 66.7 61.6 58.0 56.1 54.0 52.8
MPE(bg, E=1.5,7"=50) after ML, 6| 80.4 67.9 60.8 57.7 55.4 51.9 50.0
MPE(ug, E=1.5,7"=50) after ML. 6| 79.5 66.7 60.7 57.2 54.6 52.2 50.6

Table 8.8: Varying amounts of training data on Switchboard. %WERs tested on
eval97sub using fast single-pass decoding with a bigram LM; small (3088 state,

6-Gaussian/state) HMM set.

Absolute changes in %ZWER:

Amount of training data

1.125h 2.25h

4.5h 9h 18h 68h 265h

MMI (ug) vs. MLE
MMI (ug, 77=100) vs. MLE
MPE (ug, 7/=50) vs. MLE

+3.0 +1.9
+0.4 -0.6
+1.7 +0.6

+0.7 +0.3 -0.7 -2.5 -3.1

-04 -13 -1.5-19 -29
-1.3 -2.1 -3.0 -3.7 -5.1

Table 8.9: Varying the amount of training data for ML,MMI and MPE: Switch-
board. Comparisons between different criteria: absolute %YWER change.
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see how the improvement from MPE training varies with training set size. The
subsets of training data are the full 265h set h5train00, the 68h set h5train00sub,
the 18h Minitrain subset and randomly chosen subsets of Minitrain of decreasing
size. The absolute test-set % WERs from these experiments are given in Table 8.8.

Comparisons between the different training criteria for varying amounts of train-
ing data are given in Table 8.9, which compares MMI, I-smoothed MMI and
MPE with MLE. The result is that both MPE and MMI training outperform
MLE only when there is enough training data available; but MPE outperforms
MMI for all amounts of training data. When the training data falls below some
point between 4.5h and 2.25h (about 60 frames/Gaussian), I-smoothed MMI be-
gins to outperform I-smoothed MPE. This indicates that at very small amounts
of training data MMI may generalise better, but the absolute improvement from
I-smoothed MMI in the range where it outperforms MPE is so small (0.6%) that
for all practical purposes, as far as these experiments are concerned MPE can be
considered the criterion of choice.

The results in Table 8.8 also have implications for the difference between using
bigram and unigram training lattices; these are discussed in Section 8.10.

Paradoxically, when MMI training is started directly from the baseline HMM set
trained on the 18h Minitrain subset, without prior ML training on the chosen
subset of data, (this experiment is labeled “from 18h ML” in Table 8.8) MMI is
much less degradation when training on small amounts of data than ML training
on the same amount of data. This seems to be because with small amounts
of training data the MMI training algorithm quickly “learns” the data and the
parameters do not change further, retaining a memory of the original ML system
trained on 18 hours of data. This is due to the nature of the update equations
used and the way the smoothing constant D is set: there is no change to the
parameters once the training data becomes correctly recognised.

To summarise the results of this experiment: in this case, MPE training seems
to outperform MLE when more than about 60 frames of data per Gaussian is
available; MMI starts to outperform MLE after about 200 frames per Gaussian.
MPE always outperforms standard MMI, and in the region where discriminative
training is worthwhile it always outperforms I-smoothed MMI.

8.5 Effect of varying Gaussians/state

Table 8.10 gives discriminative training results for versions of an HMM set with
widely varying numbers of Gaussians per state, tested on the American Business
News corpus. All HMM sets have 6399 tree-clustered states.

Table 8.11 gives comparisons between various different criteria across the different
systems. The third line compares MPE and MMI; MPE seems to outperform
standard and I-smoothed MMI for all ratios of training data to size of HMM set.
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# Gaussians / state

1 2 4 12 16 24 32
Avg Frames/Gaussian 3710 1860 928 309 232 155 116
Avg Gauss/hour 96 194 388 1160 1552 2330 3100

Avg %WER on csrnabl_{dev,eval}
MLE 14.70 12.53 10.86 9.57 9.38 9.23 9.19
MMI ug, E=1 (iter 4) 12.26 10.72 10.01 9.10 9.03 897
MMI ug, E=1, 71=100 (iter 4)|12.18 10.81 9.82 9.20 8.86 9.05
MPE ug, E=2, 7/=50 (iter 8) |12.00 10.67 9.61 9.00 8.86 8.57 8.81

Table 8.10: Varying the number of Gaussians per mixture: NAB SI-284 (66h)
discriminative training.

# Gaussians / state
1 2 4 12 16 24 32
%WER, change on csrnabl_{dev,eval}

MMI vs. MLE 244 -1.81 -0.85 -0.47 -0.20 -0.22
MMI, /=100 vs. /=0 -0.08 +0.09 -0.19 +0.10 -0.17 40.08
MPE (E=2) vs. MMI | -0.26 -0.05 -0.40 -0.10 -0.29 -0.16
MPE (E=2) vs. MLE |-2.70 -1.86 -1.25 -0.57 -0.52 -0.66 -0.38
MPE (E=1) vs. MMI [40.72 40.58 -0.12 -0.10 -0.25 -0.20

Table 8.11: Varying Gaussians per mixture: comparisons between different crite-
ria.
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ID #states # mix train  #frames Test
/state data (hr) /gauss set

Switchboard SW1 6165 16 265 967 eval98
Switchboard SW2 6165 12 68 330 eval98
Switchboard SW3 3088 6 265 5150 eval97sub
Switchboard SW4 3088 6 68 1320 eval97sub
Switchboard SW5 3088 6 18 350 eval97sub
Switchboard SW6 3088 6 4.5 88 eval97sub
Switchboard SW7 3088 6 1.125 22 eval97sub
WSJ/NAB WSJ1 6399 12 66 309 csrnabl_{dev,eval}
WSJ/NAB WSJ2 6399 4 66 928 csrnabl_{dev,eval}
WSJ/NAB WSJ3 6399 1 66 3713 csrnabl_{dev,eval}
Resource Management| RM1 1582 6 3.8 144  oct89,feb91,feb92,sep92
Broadcast News BN1 6684 12 72 323 bndev96

Table 8.12: Training set sizes and HMM set sizes for various setups

I-smoothed MMI does not give a consistent improvement over MMI in this case.

These results are in agreement with the conclusion from previous experiments
on Switchboard with varying amounts of training data (Table 8.8) that MPE
gives an improvement above about 60 frames of data per Gaussian; the limit is
not reached here, but MPE continues to give small improvements down to the
experimental limit of 116 frames of data per Gaussian. Small improvements are
also obtained with MMI training down to 116 frames per Gaussian, unlike in
the Switchboard case (Table 8.8) where MMI stopped being effective around 200
frames per Gaussian.

8.6 Ratio of data to HMM set size

The ratio of the length of training data to the HMM set size (in Gaussians) is a
good predictor of the amount of improvement to be gained from discriminative
training. This section compares results from a number of different experiments,
in which MMI, I-smoothed MMI and MPE training are tested on a number of
different corpora. The training setups, giving different amounts of training data
and sizes of training set, are shown in Table 8.12. Tables 8.13, 8.14, and 8.15
give the specific training setups (number of iterations, amount of I-smoothing,
smoothing constant F) and improvements for the three different criteria.

Regression analysis was used to predict the relative improvement based on the
amount of training data and size of the HMM set. Figure 8.1 shows for MPE
the relative improvement predicted by the log. (#frames of training data per
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ID E #iters %WER %relative
MLE-MMI improvement
SW1 |2 8 45.6-41.8 8.3
SW2 |2 4 46.6-44.3 4.9
SW3 |2 4 55.7-52.6 5.6
SW4 |2 4 55.9-53.4 4.5
SW5 |2 4 57.6-56.9 1.2
SW6 | 2 4 62.0-62.7 -1.1
SW7 |2 4 77.8-80.8 -3.9
WSJ1|1 4 9.57-9.10 4.9
WSJ2| 1 4 10.86-10.01 7.8
WSJ3| 1 4 14.7-12.26 16.6
RM1 |2 4 4.13-3.82 7.5
BN1 |1 4 29.6-27.9 5.7

Table 8.13: MMI training on various corpora showing relative improvements.

ID E 11 #iters %WER %relative
MLE-MMI improvement
SW1 |1 200 8 45.6-41.4 9.2
SW2 |1 200 6 46.6-43.8 6.0
SW3 |2 100 4 55.7-52.8 5.2
SW4 |2 100 4 55.9-54.0 3.4
SW5 |2 100 4 57.6-56.1 2.6
SW6 |2 100 4 62.0-61.6 0.6
SW7 |2 100 4 77.8-78.2 -0.5
WSJ1|1 100 4 9.57-9.20 3.9
WSJ2|1 100 4  10.86-9.82 9.6
WSJ3|1 100 4  14.7-12.18 17.1
RM1 (2 100 4 4.13-3.89 5.8
BN1 |1 100 4 29.6-27.8 6.1

Table 8.14: I-smoothed MMI on various corpora showing relative improvements.
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Figure 8.1: MPE: relative improvements in %WER. over various corpora, pre-
dicted by log, (#frames/Gaussian)
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Figure 8.2: Relative improvement from MPE, I-Crit and MMI on various corpora
and setups, plotted against the log, (#frames/Gaussian) of training data.
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1D E 11 #iters %WER %relative
MLE-MPE improvement
SW1 | 2 100 8 45.6-40.8 10.5
SW2 | 2 50 8 46.6-43.1 7.5
SW3 (1.5 50 6 55.7-50.6 9.2
SW4 |1.5 50 6 55.9-52.2 6.6
SW5 [1.5 50 6 57.6-54.6 5.2
SW6 (1.5 50 6 62.0-60.7 2.1
SW7 1.5 50 6 77.8-79.5 -2.2
WSJ1| 2 50 8 9.57-9.00 6.0
WSJ2| 2 50 8 10.86-9.61 11.5
WSJ3| 2 50 8 14.7-12.0 18.4
RM1 | 2 50 6 4.13-3.96 4.1
BN1 2 50 8 29.6-26.2 11.5

Table 8.15: MPE training on various corpora showing relative improvements

Gaussian). The average squared error with this method is 9.00; adding the log
(number of Gaussians) to the regression analysis as a second predictor variable
only reduces this to 8.50. The #frames/Gaussian seems to predict most of the
variation in relative improvement.

Figure 8.2 compares MPE, I-smoothed MMI and MMI for the various different
corpora and HMM sets. The regression analysis shows that MPE tends to out-
perform MMI at all relative amounts of training data, but at very small amounts
of training data I-smoothed MMI can be better than MPE. However, the point
where the two meet is where the improvement is zero and there would be no
point in discriminative training in any case. I-smoothed MMI is approximately
the same as MMI for large amounts of training data but better than MMI at
small ratios.

The predicted relative improvement as a function of L = log, (#{rames/Gaussian),
is:

e MPE: —9.54 + 2.79L.
e MMI: —9.95 4 2.47L.

e MMI+I-smoothing: —6.87 + 2.06L.

This does not predict the relative improvement very exactly (the standard de-
viation is about 3% relative change in %WER) but may be useful in deciding
whether to use discriminative training.
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Figure 8.3: Convergence of MPE criterion and WER for three corpora

8.7 Convergence of training

Figure 8.3 displays the convergence of the MPE criterion (normalised by the
number of words in the reference transcript), and the changes in test-set WER as
training proceeds. This is for the standard HMM set sizes and training sets for
the three major corpora, with the smoothing constant E set to 2 in all cases. As
can be seen, there is a smooth optimisation of the criterion and a fairly smooth
increase in WER. For standard MPE experiments, training is continued for 8
iterations; as can be seen from the graphs, the test-set WER, is beginning to
converge after 8 iterations.

8.8 Effect of probability scale &

The effect of the probability scale on MMI training is covered in Section 5.3.9.
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Test %WER on eval98 (and ins/del ratio)

Probability scale k
1/24 1/12 1/6

MLE baseline (no scale) 46.6 (0.25)

MPE ug, E=2, 7/ = 50 (8 its) ip=0.0|43.3 (0.26) 43.1 (0.34)  44.5 (0.39)
ip=0.2|43.2 (0.36)
ip=0.4|43.7 (0.48)

(a) h5train00sub, 68h

Test %AWER on eval98 (and ins/del ratio)

Probability scale k

1/12 1/6
MLE baseline (no scale) 45.6 (0.27)
MPE ug, E=2, 7/ = 100 (4 its) ip=0.0|41.6 (0.28) 42.7 (0.33)

(b) h5train00, 265h

Table 8.16: %WERs on Switchboard, tested on eval98, for different probability
scales x and insertion penalty ip for MPE.

Table 8.16 shows the results of varying the probability scale x used in MPE
training. The default value is the inverse of the normal language model scale,
1/12 in the case of Switchboard training. This appears to be close to the optimal
value for both MMI and MPE training. For the full training set, only a larger
probability scale is tried since it is expected that the optimal value should be
larger (closer to oo, which is more similar to recognition) as the training data is
increased.

Note that as kK becomes smaller, more and more sentences in the denominator
model begin to contribute significantly to the probability of the data. This re-
duces the variance of the updated parameters because the denominator statistics
used in the update equations become for each Gaussian a sum over a larger
number of parts of training data.

It appears that there is an interaction between the probability scale and the ratio
of insertions to deletions found in subsequent recognition. The insertion/deletion
ratios are shown in Table 8.16 and they increase with the probability scale.

By adding an “insertion penalty” (ip in Table 8.16) at each phone transition
during training, it is possible to correct for this and vary the scale x without
affecting the insertion/deletion ratio. However, even when the insertion penalty
is optimised there is no improvement from varying the scale k away from 1/12.
(Note that the log insertion penalty is not scaled by &, and that a positive value
of ip makes an extra phone more likely).
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Test %WER on on csrnabl_{dev,eval} (ins/del ratio)
# ins Probability scale x (default=1/15)
its pen | 1/120  1/60 1/30 1/15 1/7.5
MLE (no scale)) 9.57 (0.95)
MPE (2) 0.0 8.94 (0.81)9.06 (0.96) 9.13 (1.05)
(8) 0.0 9.04 (0.84)9.00 (1.05)9.24 (1.25)
(2) 0.85 8.80 (0.96)
(8) 0.85 9.83 (1.31)
(2) 1.25 [8.93 (0.94)
(5) 1.25 19.72 (0.90)

Table 8.17: Varying probability scaling for MLE and MPE (12 Gauss/state, ug,
E=2, 71=50), on NAB.

avg %7YWER Value of
on csrnabl _{dev,eval} |Criterion
Iteration
2 4 6 8 10 7
MLE 9.57 0.917
MPE ug, k = 1/15, E=0.5 71=50|9.06 9.10 9.07 9.09 0.957
MPE ug, k = 1/15, E=1, 7/=50 |9.00 9.05 8.92 9.00 0.958
MPE ug, k = 1/15, E=2, /=50 |9.06 8.96 8.98 9.00 8.96| 0.958
MPE ug, k = 1/15, E=4, 7/=50 |9.14 9.06 9.06 8.87 8.99| 0.956

Table 8.18: Varying F on NAB for MMI and MPE: 12 Gaussians/state.

Table 8.17 shows the effect of varying the scale x for MPE training on NAB/Wall
Street Journal. Better results can be achieved with a value of x smaller than
the default value of 1/15, but the optimum is reached earlier in training and the
system seems more vulnerable to overtraining.

In summary, setting « to the inverse of the normal language model scale, which
tends to be around 12-15, is a safe approach. A smaller value of kK sometimes
helps, but if a smaller value is used the system can overtrain more easily (so later
iterations of training give worse results).

8.9 Effect of smoothing constant F.

The smoothing constant E controls the speed of training, and is generally set to 1
or 2. A smaller value leads to faster training. See Section 4.5.3 for an explanation
of how E relates to the update equations.
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avg %WER
on csrnabl_{dev,eval}

1-mix 2-mix 4-mix 12-mix 24-mix 32-mix
MLE 14.70 12.53 10.86 9.57 9.23 9.19
MPE ug, E=1, 77=50 (iter 8) [12.98 11.30 9.89  9.00 8.61 8.77
MPE ug, E=2, 77=50 (iter 8) [12.00 10.67 9.61 9.00 8.57 8.81
Criterion value
MLE 0.883 0.893 0.902 0.917 0.932 0.939
MPE ug, E=1, 77=50 (iter 8) |0.931 0.938 0.946 0.9580 0.9662 0.9696
MPE ug, E=2, 77=50 (iter 8) |0.933 0.941 0.948 0.9581 0.9660 0.9693

[Difference E=2 vs. E=1]|0.002 0.003 0.002 0.0001 -0.0002 -0.0003

Table 8.19: E=1 vs. E=2 on North American Business News (NAB) for MPE
with varying Gaussians/state.

Iteration
%WER on eval98 | Criterion
0 2 4 6 8 7
MLE 46.6 0.662

MPE ug, k = 1/12, E=1, 7/=50| 46.6 439 434 44.1 446 | 0.781
MPE ug, k = 1/12, E=2, 7'=50| 46.6 44.3 43.6 43.3 43.1 | 0.787

Table 8.20: E=1 vs. FE=2 for Switchboard MPE training. Training set is
h5train00sub (68h); 12 Gaussians/state.

Table 8.18 gives results for a range of values of E for MPE training on NAB. On
this corpus the best test set WER after 4 iterations seem to be achieved with
E=1or 2, with 0.5 and 4 giving worse results. In this case the best test set WERs
are obtained with the values of F that optimise the criterion best.

Table 8.19 compares E=1 and E=2 for MPE training on NAB using HMM sets
with a varying number of Gaussians per state. There seems to be an interaction
between the number of Gaussians per state, and the the value of the smoothing
constant E. A larger value of E (for slower training) seems to work better for
smaller HMM sets; with large HMM sets there is no consistent difference in WER
between £=1.0 and E=2.0. It is still the case that the best error rate coincides
with the highest value of the criterion, although there tends to be a higher error
rate with E=1 than would be expected from the difference in criterion alone. If
optimisation rates are equal, slower training (larger E) is best.

Table 8.20 compares training with £=1 and E=2 for MPE trained on the 65h
subset of Switchboard training data. E=2 seems to work considerably better
than E=1 in terms of both error rates and criterion. This is probably due to the
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avg %WER
on csrnabl_{dev,eval}
1-mix 2-mix 4-mix 12-mix 32-mix

MLE 14.70 12.53 10.86 9.57  9.19
MPE ug, E=2, 77=50 (iter 8)|12.00 10.67 9.61 9.00  8.81
MPE bg, E=2, 71=50 (iter 8)|12.27 10.89 10.37 9.24  9.53
Difference, ug vs. bg -0.27 -0.22 -0.76 -0.24 -0.72

Table 8.21: Unigram vs. Bigram language models for training with MPE on
North American Business News (NAB): varying Gaussians/state.

speed of update being too fast, leading to overshoot of the parameters.

In summary, from the experiments reported here the best test set results tend to
be obtained with the value of F that optimises the criterion fastest, or sometimes
a slightly larger value. The best value of E' depends on the corpus and the number
of Gaussians per state in the HMM set (less Gaussians — larger E). In general
E=2 is a good value, but for corpora with lower error rates (e.g, NAB) where
larger HMM sets are used, £=1 may be better.

8.10 Language model for MPE: Unigram vs Bi-

gram.
WER Training Subset | WER Test (ins/del)
Full bg Lat bg Lat ug | eval97sub eval97sub
ug-bg
MLE baseline 24.75 25.6 38.29 |50.6 (0.17)
MPE E = 2, 7/ =50 (iter 8) bg| 16.95 17.01  30.56 |48.6 (0.24)
MPE E = 2, 71 =50 (iter 8) ug| 20.10 20.31  25.50 |48.1 (0.28) -0.5

Table 8.22: Unigram vs. Bigram for training on Switchboard; Minitrain (18h)
training, 12-mix HMM set (WERs given with ins/del ratios in brackets).

MPE training requires a language model to be used for the sentence likelihood
P(s) that appears in the MPE objective function. Only unigram and bigram
language models are considered here: in Section 5.3.8, scaled-down unigram and
zero-gram language models are also considered for MMI training but were not
found to be generally useful; unpublished experiments have found scaled-down
unigram and zero-gram language models to be an unpromising approach for MPE
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Amount of training data
1.125h 2.25h 4.5h 9h 18h 68h 265h
Change, ug vs. bg for MMI| +0.2 0.0 -0.5 +0.2 +0.0 -0.3 -0.6
Change, ug vs. bg for MPE| -09 -1.2 -0.1 -0.5 -0.8 +0.3 4+0.6

Table 8.23: Unigram vs. bigram lattices for training on Switchboard, comparison
of results from Table 8.8. Negative numbers mean unigram is better.

training. It was shown in [Schluter et al., 1999] that a unigram language model
gave better results for MMI training than a bigram or zero-gram language model.

It should be noted that the scaling factors are applied to the language models
as follows: the normal language model scale and word insertion penalties used in
testing are applied to the n-gram language model when creating the lattice, and
the resulting log likelihoods are later scaled down by the same scale xk which is
applied to the acoustic probabilities in discriminative training. As a result the
final language model is generally unscaled because k is generally set to the inverse
of the testing LM scale.

Table 8.21 compares training with bigram and unigram LMs on the NAB corpus,
for varying numbers of Gaussians per state. A unigram language model appears
to generalise better than bigram to the test set, at all numbers of mixture com-
ponents. This may be because with a unigram language model a wider range
of incorrect words have significant probability in the denominator lattice, which
decreases the variance of the MMI-updated parameters.

Table 8.22 compares lattice training on the Switchboard corpus (minitrain subset)
using a unigram or bigram language model. Test set results are 0.5% better with
unigram training. Training set results are also given, showing that as expected
the training set results improve more with the same language model that was
used to train.

Table 8.23 shows the differences between bigram and unigram language models
in both MMI and MPE training, on Switchboard for a wide range of training set
sizes (1.125h to 265h) using a small HMM set. The experiments are described in
Section 8.4 (see Table 8.8). The difference between unigram and bigram for MMI
does not show any consistent pattern, but for MPE training unigram lattices
perform better for limited training data, while bigram lattices perform better
where a large amount of training data is available. This is expected since a
bigram language model simulates recognition more precisely than unigram, but
a unigram may generalize better when there is limited training data.

Tables 8.24 and 8.25 compare bigram and unigram training on the 65h subset and
the full training set on Switchboard. In both cases unigram lattices seem to give
better performance, although the difference is small (0.3% and 0.2% absolute).
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To summarise, a unigram language model almost always performs better than
bigram, but in some experiments with a very small HMM set but large training
set (i.e. plenty of training data per Gaussian) a bigram language model was
better. Note that there may be some benefit in combining different LMs and
different sets of lattices, as described in Section 8.18.5.

%WER on eval98 Ins/del ratio | Diff ug-bg
(last iter) | (last iter)

MLE 46.6 0.27
Training iteration

0o 2 4 6 8

MPE «k =1/12, E=2, 71 =50 bg|46.6 44.5 43.6 43.6 43.4 0.29

ug|46.6 44.3 43.6 43.3 43.1 0.34 -0.3

Table 8.24: Unigram vs. bigram training on Switchboard: hb5train00sub (68h)
training, 12-mix HMM set.

%WER on eval98 Ins/del ratio | Diff ug-bg
(last iter) | (last iter)

MLE 45.6 0.27
Training iteration

0o 2 4 6 8

MPE k =1/12, E=2, 71 =50 bg|45.6 43.2 41.3 40.8 40.6 0.26

ug|45.6 42.5 41.3 40.6 40.4 0.32 -0.2

Table 8.25: Unigram vs. bigram training on Switchboard: h5train00 (265h)
training, 16-mix HMM set.

8.11 Generation of lattices

The unigram lattices used for the experiments presented above were generated in
a two-stage process where initial lattices were created using a bigram language
model and a unigram language model was used to create phone-marked lattices
with unigram LM probabilities. The exact pruning beams used in this process
are given in Section A.3 of Appendix A. The effect of this method is that the
unigram lattices will lack paths which had a very low bigram probability.

Experiments on NAB and Switchboard were performed, in order to examine the
effect of creating unigram lattices using unigram language models right from the
start. These are referred to as ug-ug lattices, as distinct from the bg-ug lattices
in which a bigram LM was used on the first pass of recognition.
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avg %WER Value of
on csrnabl_{dev,eval} |Criterion
Iteration
0 2 4 6 8 7
MPE ug, k = 1/15, E=2.0 7/=50
bg-ug lattices (default) 9.57 9.09 9.00 9.05 8.96| 0.973
ug-ug lattices 9.57 8.85 8.72 8.78 8.74| 0.964
MMI ug, k = 1/15, E=2.9
bg-ug lattices (default) 9.57 9.33 9.27 9.07 8.99| -0.0068
ug-ug lattices 9.57 9.32 9.11 8.96 8.93| -0.0079

Table 8.26: Training with unigram lattices created from rescoring bigram lattices
(bg-ug) or unigram lattices (ug-ug); tested on NAB.

Table 8.26 compares these two types of lattices for MPE and MMI training. The
lattices created from unigram recognition were about four times larger than the
ones created with a bigram, and give better results for both MPE and MMI
training. However, the difference appears to be much smaller for more difficult
tasks. Experiments performed in preparation for the 2003 NIST evaluation of a
Switchboard system compared these two kinds of lattices for MPE training. The
unigram-generated lattices were only about 30% larger than the bigram-generated
ones, and the difference in recognition results was only about 0.1% absolute
improvement. The difference between NAB and Switchboard is probably related
to the fact that on Switchboard the difference in perplexity between unigram and
bigram language models is much less.

8.12 Effect of I-smoothing constant 77.

Figure 8.27 (a) shows the effect of varying the I-smoothing constant 7! for MPE
training on the 68h subset of h5train00. The value of the MPE criterion (column
3) shows that higher values of 7/ (more smoothing) acts against optimisation of
the MPE criterion. Training set results with the same language model used for
training (unigram, column 2) show that MPE gives good training set improve-
ments with all values of 77 used. However, generalisation to the training set with
a different language model or to the test set is very poor without any smoothing
(rf = 0), with a significant degradation in test-set performance relative to MLE.
The best performance is around the range 7/ = 25 to 50.

Figure 8.27 (b) gives the same experiment on the full 265h training set. Again
71 = 50 performs better than 7/ = 100.

Figure 8.28 gives results for MPE training with 7/ = 25 and 7/ = 50 on a 12-
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(a) h5train00sub (68h)

Training Type Train Subset WER | MPE Training | Test WER
Full bg Lat ug Criterion eval98
MLE baseline 26.3 41.8 0.66 46.6
MPE ug,E=2,7=0 (iter 8) 25.5 28.5 0.80 50.7
MPE ug,E=2,71=25 (iter 8) 20.0 26.2 0.81 43.1
MPE ug,E=2,7'=50 (iter 8) 20.6 27.9 0.79 43.1
MPE ug, E=2,7'=100 (iter 8)| 21.6 29.9 0.77 43.3
(b) h5train00 (265h)
Training Type Train Subset WER | Test WER
Full bg Lat ug eval98

MLE baseline 30.1 47.2 45.6

MPE ug,E=2,71=100 (8)| 23.9 344 40.8

MPE ug,E=2,71=50 (8) | 24.0 32.7 40.4

Table 8.27: Different values of 7! for I-smoothing of MPE on Switchboard.

avg %WER
on csrnabl_{dev,eval}
MLE 12-mix 9.57
MPE 12-mix 7 = 25, E =1 (iter 8) 9.36
MPE 12-mix 7! = 50, E = 1 (iter 8) 8.99

Table 8.28: Different values of 7! for I-smoothing of MPE on NAB.

mixture NAB system. As with previous experiments, the results are consistent
with 77 = 50 being the best value for MPE training.

To summarise, 7/=50 is generally a suitable value.

8.13 Dimension-specific I-smoothing

In Section 4.3.5, a method is described for setting the 7 values for I-smoothing
in a dimension-specific way. The mean fimea, and variance o2, of the means in
dimension d, and the same statistics p.r and o2,, of the variances, are calculated.

Dimension-specific 77 values are then calculated using the following formula:

I :uvar(d)
= 1o + a2 8.1
@) = i +a B (8.1)
ar(d)?
() = T+ 20 @ 8.2)

Ohean (@)’

mean
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Figure 8.4: Dimension-specific 77.

where 7o, and «a are free parameters to be set. Means and variances are now
updated using Equations (4.30) and (4.31). On experiments with ML adaptive
training (not published), it was found that setting Tmi, to 0.577 and « to 0.477,
where 71 was the previous smoothing constant, works well. 7/ = 50 is the nor-
mal smoothing constant for MPE, so most experiments on dimension-specific
I-smoothing use 71, = 25 and a = 20. Figure 8.4 shows what effect this rule has
in terms of the individual 7! values. The smoothing for the variances is much
greater than the previous value of 50, and the smoothing for the mean varies be-
low and above 50. Note that for MPE the prior distributions in Equations (4.30)
and (4.31) are based around the ML statistics (“mle”), not the numerator statis-
tics (“num”) which are now different from the ML statistics.

Tables 8.29, 8.30 and 8.31 compare default and dimension-specific I-smoothing
on NAB, Switchboard and Broadcast News. The NAB results are with a number
of different combinations of constants o and 7T, and use an HMM set with 4
Gaussians per state (trained on 1/3 of the training data) and one with 1 Gaussian
per state, in order to have results from a reasonably wide range of systems.
There is an improvement of 0.25% absolute relative to baseline MPE on the
12 Gaussian/state NAB system, but the results on other systems are not so
encouraging, with 0.05% absolute improvement on the 4 Gaussian/state NAB
system with reduced (1/3) training data, 0.06% absolute improvement on the
1 Gaussian/state NAB system, 0.1% absolute on the Switchboard system and
no improvement on Broadcast News. The improvements from dimension-specific
smoothing seem to be consistent, although small, and fit in well with the notion
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avg %WER MPE
on csrnabl_{dev,eval} Crit
Iteration
0 2 4 6 8 7

12mix, 7/=50 9.57 9.06 896 898 9.00 |0.958
12mix, 77=25 9.57 897 899 9.05 9.09 [0.964
12mi, 74, =25, 0=20 9.57 8.99 8.87 8.69 8.750.955
12mix, 74, =25, 0=10 9.57 8.97 896 8.83 8.730.958
12mix, 7. =50, a=10 9.57 9.08 894 8.88 8.86 |0.953
12mix, 7. =50, a=20 9.57 9.09 894 887 8.85|0.951
dmix (1/3 data), 71=50 10.97 10.33 10.24 10.31 10.43]0.953
4mix (1/3 data), 71,,=25, =20{10.97 10.39 10.34 10.24 10.38|0.949
1mix, 771=50 14.70 13.05 12.47 12.15 11.99|0.934
Imix, 7L, =25 a=20 14.70 13.19 12.52 12.11 11.93|0.921

Table 8.29: MPE with constant vs. dimension-specific 7/, on NAB: E=2, unigram
lattices.

avg %WER Value of
on eval98 Criterion
Iteration
0 4 6 8 7
12mix MPE, 7/=50 46.6 43.6 43.3 43.1| 0.788
12mix MPE, 7/=25 46.6 43.3 43.1 43.1| 0.788
12mix MPE, 7, =25, a=20|46.6 43.5 43.2 43.0| 0.772

Table 8.30: Constant vs. dimension-specific 7/, on Switchboard (h5train00sub):
E=2, unigram lattices.

avg %NYWER Value of
on bndev96 Criterion
Iteration
0 2 4 6 8 7
12mix MPE, 7/=50 29.6 27.4 26.5 26.4 26.2| 0.881
12mix MPE, 7. =25 a=20|29.6 27.5 26.6 26.2 26.2| 0.870

Table 8.31: Constant vs. dimension-specific 7/, on Broadcast News: E=2, uni-
gram lattices.
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that I-smoothing can be viewed as a MAP technique.

In the context of MAP for ML adaptation, improvements of up to about 0.4%
absolute were gained by using dimension-specific values of 77, relative to nor-
mal MAP adaptation as in [Gauvain & Lee, 1994]. In those experiments (not
published), a Switchboard-trained HMM set was adapted to the Voicemail task.

Those experiments substituted a previously used value of 7/ (10) with 7., =
0.577 and o = 0.477, so 71,. = 5 and a = 4. Most improvement was seen for
intermediate amounts of adaptation data, which is to be expected since for zero

or infinite adaptation data the value of 7! is irrelevant.

To summarise the effect of varying 7/ per dimension: for MPE training, it gives
a small but consistent improvement over a number of different corpora; it can
also give a larger improvement for MAP adaptation in an MLE context.

8.14 Smoothing constant F varying with itera-
tion

The smoothing constant E which sets the speed of training for both MMI and
MPE is generally set to a constant value of E=1 or 2. As described in Section 4.2.4
there is an analogy between the EB update equations and the technique of Gener-
alised Probabilistic Descent (GPD), which shows that convergence is guaranteed
if the smoothing constant F is linearly increased from iteration to iteration. The
effect of increasing E in this way was investigated. In all experiments, E was set
to a value of 1 or 2 on the first iteration, and increased by a constant amount on
each iteration. As shown in Table 8.32 this approach gives a small improvement
in recognition results on the NAB corpus, starting from both E=1 and E=2.
Starting from E=1 and increasing by 0.25 per iteration (to nearly 3 after 8 it-
erations), the criterion is optimised faster than the E=2 baseline and the final
recognition results were improved. Results from Broadcast news (Table 8.33)
testing this same configuration (EF=1, increasing by 0.25 per iteration) find an
absolute improvement, 0.1% absolute, and the same improvement is found on the
eval98 test set for Switchboard (Table 8.14), with an improvement of 0.3% on the
smaller eval97sub test set.

In summary, increasing the smoothing constant £ with iteration seems to give a
small but robust improvement in recognition results. The regime which consists
of starting with E=1 and increasing by 0.25 on each iteration (i.e. ending around
E=3 after 8 iterations) seems to give good results.
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avg %WER Value of
increment | on csrnabl_{dev,eval} |Criterion
per Iteration
iteration | 0 2 4 6 8 7
12mix MPE, 7/=50, E=2 9.57 9.06 8.96 8.98 9.00| 1.05
12mix MPE, /=50 E=2 0.25 9.57 9.09 9.03 9.00 8.93| 0.9577
12mix MPE, /=50 E=1 0.25 9.57 8.97 9.03 8.92 8.88| 0.9587

Table 8.32: Constant vs. increasing £ on NAB: unigram lattices.

avg %WER Value of
increment on bndev96 Criterion
per Iteration
iteration | 0 2 4 6 8 7
12mix MPE, /=50, E=2 29.6 27.4 26.5 26.4 26.2| 0.881
12mix MPE, /=50, E=2 0.25 29.6 27.5 26.6 26.3 26.2| 0.877
12mix MPE, 7/=50, E=2 0.5 29.6 27.5 26.7 26.4 26.2| 0.874
12mix MPE, /=50, E=1 0.25 29.6 27.0 26.3 26.2 26.1| 0.883

Table 8.33: Constant vs. increasing E on Broadcast News: unigram lattices.

Table 8.34: Constant vs. increasing E on Switchboard: h5train00sub (68h) train-

ing

increment| %WER on eval98 | final
per Iteration ins/del

iteration | 0 4 6 8 ratio

MLE 46.6 0.27
MPE ug, 7/=50, E=2 46.6 43.6 43.3 43.2| 0.34
MPE ug, 7/=50, E=1| 0.25 |46.6 43.4 43.2 43.1| 0.37

%WER on eval97sub

MLE 46.0 0.27
MPE ug, /=50, E=2 46.0 42.6 424 42.2 | 0.28
MPE ug, 7/=50, E=1| 0.25 |46.0 42.5 42.3 41.9 | 0.30
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avg %WER ins/del
on csrnabl_{dev,eval} ratio
Iteration

0o 2 4 6 8 8
12mix MPE, E=2, 77=50 (inexact) | 9.57 9.09 9.00 8.99 8.94 [ 1.07
12mix, MPE ug, E=2, 7/=50, I=1.0 | 9.57 9.16 9.00 8.94 8.86 | 1.06
12mix, MPE ug, E=2, 71=50, I=0.9 | 9.57 9.16 8.95 8.95 8.88| 1.10
1mix, MPE ug, E=2, 7/=50 (inexact)|14.70 13.08 12.48 12.08 11.99| 0.81
1mix, MPE ug, E=2, 7/=50, I=1.0 |14.70 12.86 12.26 11.96 11.77| 0.76
1mix, MPE ug, E=2, 71=50, I=0.9 |14.70 12.82 12.27 11.91 11.83| 0.76

Table 8.35: Exact vs. inexact implementation of MPE training: NAB

Iteration ins/del

0 4 6 8 ratio

%WER on eval98 | final

MLE 46.6 0.27
MPE ug, E=2, 7'=50 (inexact baseline)|46.6 43.6 43.3 43.2 | 0.34
MPE ug, E=2, /=50, I=1 46.6 43.7 43.4 432 | 0.33
MPE ug, E=2, /=50, 1=0.9 46.6 43.8 43.3 43.1| 0.35

%WER on eval97sub

MLE 46.0 0.24
MPE ug, E=2, 7/=50 (inexact baseline) [46.0 42.6 42.4 42.2 | 0.28
MPE ug, E=2, 71=50, I=1 46.0 43.2 43.0 42.9 | 0.27
MPE ug, E=2, 71=50, 1=0.9 46.0 42.9 42.8 42.8 | 0.28

Table 8.36: Exact vs. inexact implementation of MPE training: Switchboard,
h5train00sub (68h) training data

8.15 Exact vs. approximate MPE

Previous experiments have been based on an approximate method of assigning
correctness to phones, as described in Section 7.2.1. A more exact implemen-
tations, using alignment to “phone sausages,” is described in Section 7.3. This
section compares the approximate and exact implementations of MPE. As men-
tioned in Section 7.3, the exact implementation of MPE requires a constant I,
which the error of an insertion, and which may be set to a value different from 1
in order to prevent too much penalisation of insertions. A larger value of I leads
to fewer test-set insertions, so a smaller ins/del ratio.

Table 8.35 compares inexact and exact MPE for systems trained on NAB with 1
and 12 Gaussians per state. The value of I, the error of an insertion, is set both
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avg %WER ins/del
on bndev96 ratio
Iteration

0 2 4 6 8 8

12-mix, MPE ug, E=2, 77=50 (inexact)|29.6 27.4 26.5 26.3 26.3] 1.09
12-mix, MPE ug, E=2, 7/=50, I=1.0 |29.6 27.4 26.5 26.4 26.3| 1.07
12-mix, MPE ug, E=2, 7/=50, I=0.9 |29.6 27.5 26.6 26.2 26.3| 1.12

Table 8.37: Exact vs. inexact implementation of MPE training: Broadcast News

to 1 (the default value) and 0.9, as experiments with a previous implementation
of exact MPE found this necessary to correct a changed insertion/deletion ratio.
There appears to be no clear difference between the different values of I, but
exact MPE with I=1 gives a slight improvement of 0.08% absolute on the 12
Gauss/state system and 0.22% on the 1 Gauss/state system.

Table 8.15 shows similar experiments on the Switchboard corpus. Although exact
MPE with I set to 0.9 gives a 0.2% improvement on the larger eval98 test set,
there is a 0.6% increase in WER on the eval97sub test set, which is about 1/3
as large as eval98. Overall there is no change. Note that in the transcriptions
of the training data used in these experiments a number of common words had
been deleted by mistake and this may affect these results.

Table 8.37 compares approximated and exact MPE on Broadcast News. There
is no difference between exact and approximate MPE in this case.

In summary, there appears to be no consistent difference between approximate
and exact MPE but if exact MPE is used the value /=0.9 may be better than
I=1.0 (I is the error due to an insertion).

8.15.1 Exact vs. inexact implementation for Minimum
Word Error (MWE) training.

The Minimum Word Error (MWE) criterion is analogous to Minimum Phone Er-
ror, except that the function RawPhoneAccuracy (s, s,) which appears in the ob-
jective function in Equation (3.7) is replaced with a function RawWordAccuracy (s, s,)
which evaluates sentence accuracy based on word error. The same techniques

used to implement both “exact” and “inexact” MPE can be trivially transferred
to MWE.

Table 8.38 compares the exact and inexact implementations of MWE on a 1-
Gaussian per state NAB system. The exact implementation of MWE gives a
0.48% absolute improvement compared with the inexact implementation; how-
ever, it is still worse than exact or inexact MPE (comparable results for MPE
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avg %WER ins/del
on csrnabl_{dev,eval} ratio
Iteration
0 2 4 6 8 8
1-mix, MWE ug, E=2, 7/=25 (inexact baseline)|14.70 13.39 12.86 12.77 12.68| 0.56
1-mix, MWE ug, E=2, 71=25 I=1.0 14.70 13.02 12.46 12.34 12.20| 0.67

Table 8.38: Exact vs. inexact implementation of MWE (Minimum Word Error)
training: NAB.

avg %WER ins/del
on csrnabl_{dev,eval} ratio
Iteration

0 2 4 6 8 8
I-mix, MPE ug, E=2, 7/=50 |14.70 13.05 12.47 12.15 12.00] 0.82
1-mix, MWE ug, E=2, 7/=12.5|14.70 13.07 12.77 12.60 12.81| 0.72
1-mix, MWE ug, E=2, 7/=25 |14.70 13.12 12.83 12.68 12.62| 0.62
1-mix, MWE ug, E=2, 7/=50 |14.70 13.31 12.84 12.71 12.58| 0.58

Table 8.39: Comparison between MPE training, and MWE with varying I-
smoothing.

are in Table 8.35). This suggests that the exact implementation may be superior
for MWE, but the issue has not been pursued since MWE is not the technique
of choice, as shown in the next section.

8.16 MWE vs MPE training.

Table 8.39 compares MPE training with MWE training, the latter at a range of
values of 7! for I-smoothing. This shows that MPE gives better test set results
than MWE, and confirms that 7/=25 is a suitable value for training of the MWE

criterion. The result of this experiment is that MPE shows a clear advantage
over MWE.

Since MWE might be expected to perform well with an excess of training data,
an experiment was performed on the full 265h h5train00 training database on
Switchboard (Table 8.40). Inexact MPE is compared with exact MWE since pre-
vious experiments made it seem likely that those were the best configurations for
MPE and MWE respectively on Switchboard. MWE still gives less improvement
than MPE.

Table 8.41 compares MPE and MWE (both with inexact implementations) trained
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%WER on eval98 Final
Iteration ins/del
0 2 4 6 8 | ratio
MLE 45.6 0.30
MPE ug, E=2, 71=50 45.6 42.5 41.3 40.6 40.4| 0.21
MWE bg, E=2, 77=25 (exact, [=1)|45.6 42.9 41.7 41.3 40.9| 0.23

Table 8.40: MPE (inexact) vs. MWE (exact) on Switchboard: h5train00 (265h)
training, bigram lattices.

Training Subset WER, | Test WER

Full bg Lat ug eval98
MLE baseline 26.3 41.8 46.6
MPE ug, E = 2,77=50 (8 iters)| 20.6 27.9 43.1
MWE ug, E=2,7'=25 (8 iters) 20.2 25.9 43.3

Table 8.41: MPE vs. MWE on Switchboard: h5train00sub (68h) training, uni-
gram lattices.

on the smaller h5train0Osub training set with unigram lattices, and gives bigram
and unigram training set results. MWE performs slightly worse on the test set
but better on the training set.

In summary, it seems to be generally true that MPE gives slightly better test-set
performance than MWE.

8.17 Full covariance MPE

The Extended Baum-Welch update equations can trivially be extended to the
full covariance case, by replacing the scalar individual means and variances with
vectors and matrices respectively. The derivation of the update equations us-
ing weak-sense auxiliary functions is trivial to extend to the full-covariance case.
The only difficulty is in calculating the minimum value of the Gaussian-specific
smoothing constant D;,, which will give positive variance updates; as for Gaus-
sians this value is needed in setting Dj,, which is set to the maximum of twice
this value or E times yfﬁf. The normal approach, which reduces to solving a
quadratic equation, does not work with full covariances. In the full covariance
case it is done by starting at D;,, = %Efyﬁ? and successively doubling until the
updated variance matrix is positive definite, and then doubling again to get the
final value of Dj,.
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avg %WER ins/del
on csrnabl_{dev,eval} ratio
i Tteration
Diag-cov baselines 0 2 4 6 8 8
1-mix, MPE ug, E=2 50 14.70 13.08 12.48 12.08 11.99| 0.81
4-mix, MPE ug, E=2 50 10.86 9.99 9.66 9.58 9.61 | 0.97
12-mix, MPE ug, E=2 50 9.57 9.09 9.03 9.03 8096 | 1.05
Thean Taar Toffdiag Iteration
Full-covariance 0 (MLE) 1 2 3 4 4
1-mix, MPE ug, E=2 50 200 100 10.10 945 948 9.44 9.60 | 1.07
1-mix, MPE ug, E=2 50 500 200 10.11 933 9.34 9.30 9.21| 1.01
4-mix, MPE ug, E=2 50 500 200 8.86 850 839 827 822 1.16
12-mix, MPE ug, E=2 50 500 200 9.07 877 865 838 850 | 1.21

Table 8.42: Full-covariance vs diagonal MPE on NAB

8.17.1 Variance smoothing

For full covariance MPE, it is necessary to use different values of smoothing
constant 77 for the mean and variance as the latter needs more smoothing: two
values 71 . and 7. _ are used. This requires the use of the form of the EB
update equations given in Equations (4.30) to (4.31). In addition, following
preliminary experiments in MLE training, the Maximum Likelihood estimate of

the covariance, which is used as the prior in I-smoothing, has its off-diagonal

mle
elements smoothed according to the equation Ejm:,C = ijrc»%jjm’ with
Toffdiag S€t to, for instance, 200. This is is also performed on the initial iteration
of experiments reported below, in which a single iteration of ML training is used

to get an initial full-covariance model from a diagonal-Gaussian model.

Table 8.42 gives results from diagonal and full-covariance training on the NAB
corpus. Full-covariance systems are much better in absolute terms than their
MLE counterparts with the same number of mixture components. However,
MPE training gives less improvement: 18.4%, 11.5% and 6.4% relative for the
1,4 and 12 Gauss/state diagonal systems respectively, but 8.9%, 7.2% and 6.3%
relative for the full-covariance systems. This is expected since overtraining is more
of a problem with more complex systems and this can reduce the improvement
from discriminative training. The MPE criterion has a much higher value for
both ML and MPE-trained HMM sets, for the full-covariance system: for the
12 Gaussian/state HMM set, it rises during training from 0.932 to 0.978 in the
diagonal case and from 0.970 to 0.988 in the full-covariance case.

It is interesting to note that the MPE-trained full covariance 4 Gauss/state sys-
tem, at 8.22% WER, has the best WER of any system reported here. Similar
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%WER on eval97sub
Iteration
(Diagonal covariance) 77 0 2 4 6 8
MLE 16-mix 44.4
MPE 16-mix, £=2 50 444 416 40.3 40.0 39.8
Iteration
(Full covariance) Thean Tvar Tofidiag| O 1 2 3 4 5
MPE 12-mix, E=2 50 500 200 | 42.3 40.0 385 383 383 38.1
MPE 4-mix, E=2 50 500 200 | 43.8 41.7 40.7 39.9 39.2 39.1
%WER on eval98
Iteration
(Diagonal covariance) 77 0 2 4 6 8
MLE 16-mix 45.6
MPE 16-mix, £=2 50 45.6 42.7 41.6 41.0 40.8
Iteration
(Full covariance) Thean Tvar Tofidiag| O 1 2 3 4 5
MPE 12-mix, E=2 50 500 200 | 43.0 39.4 39.1
MPE 4-mix, E=2 50 500 200 | 44.6 40.3 39.3

Table 8.43: Full-covariance vs diagonal for MPE on Switchboard: h5train00
(265h) training, unigram lattices.

results cannot be obtained by using more diagonal mixture components. In Ta-
ble 8.10, the best number of Gaussians per state was found to be 24, with a WER
of 8.57% after MPE training.

Table 8.43 gives similar experiments on the Switchboard corpus. Again full co-
variances improve performance, by about 2.6% absolute for ML-trained systems
and 1.7% absolute for MPE-trained systems. The diagonal system given as the
baseline here is the largest one used for experiments here; although it has fewer
parameters than the full-covariance systems the improvement from increasing the
number of Gaussians to the optimal number is expected to be less than 0.5%, i.e.
less than the improvement the shift to full variances gives. (This was tested for
the Wall Street Journal system in Table 8.10).

Although fairly large improvements have been obtained with full-variance Gaus-
sians, they may not be very useful in practice because they add an order of
magnitude to the time taken to compute likelihoods during recognition and the
amount of memory needed; and because it is not known whether these improve-
ments would remain in a system involving MLLR adaptation and feature data
projected using a HLDA transformation.
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avg %WER ins/del
on csrnabl {dev,eval} | ratio
Iteration
0 2 4 6 8 8
12-mix, MPE ug, E=2, 7/=50 (baseline) 9.57 9.09 9.00 9.05 8.96| 1.05
12-mix, MPE ug, E=2, /=50, 7% = 5,77 = 5|9.57 9.12 9.04 9.03 8.96| 1.02

Table 8.44: Effect of prior distributions over weight and transition values: NAB.

8.18 Miscellaneous details of MPE implementa-
tion.

8.18.1 Transition and weight priors

As explained in Section 4.4.1, it is possible to use the Maximum Likelihood
estimates of the weight and transition values to form a prior distribution for
combination with the discriminative objective function. These priors are expected
to be more important for MPE training than MMI training since for MPE training
it sometimes happens that certain Gaussians have a zero numerator occupation
probability, and this can lead to some weights being set to zero. Experiments are
only performed for MPE training. This is not expected to be a significant issue
since even not updating the weights and transitions at all makes little difference
(Section 6.4.3).

Table 8.44 gives experimental results comparing the use of weight and transition
smoothing with a baseline system without smoothing. There is no consistent
difference when weight and transition smoothing is added. However, this is likely
to be due to random variations since the difference between the HMM sets is
tiny. For further work a small setting 7% = 1, 77 = 1 is recommended since
this seems likely to give more sensible transition and weight values where no
confusable examples of a particular state or transition matrix are available.

8.18.2 Context dependent MPE

Comparison of phones can be done either using or ignoring the phone context.
Unless stated otherwise, experiments here ignore the context for purposes of
comparing phones in the algorithms (exact and inexact) that differentiate the
MPE objective function. Note however that the context will affect the local
differential """ for each phone arc . Table 8.45 compares context-independent
(baseline) and context-dependent (CD) MPE. Context-dependent MPE seems to
give more improvement on the training set but less on the test set, although by
a small margin. As with the difference between MPE and MWE, reducing the
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Training Subset WER Test WER

Full bg Lat ug eval98 eval97sub
MLE baseline 26.3 41.8 46.6 46.0
MPE E = 2,7/=100 (8 iters) 21.6 29.9 43.3 423
MPE-CD,E=2,7'=100 (8 iters)| 20.7 28.5 43.4 42.5

Table 8.45: MPE: context-dependent (CD) vs. context-independent on Switch-
board, h5train00sub (68h) training set.

Iteration final final
0 2 4 6 8 |ins/del|train-lattice
%WER on eval98 ratio |%WER (ug)

MLE 46.6 0.27 41.8

MPE ug, E=2, 71=50 46.6 44.3 43.6 43.3 43.1| 0.34 27.9

MPE ug, E=2, 7'=50 (no silence)|46.6 44.4 43.6 43.1 43.0| 0.30 27.7
%WER on eval97sub

MPE ug, E=2, /=50 46.0 433 42.7 42.4 42.1| 0.28

MPE ug, E=2, 71=50 (no silence)|46.0 43.6 42.9 42.6 42.4| 0.25

Table 8.46: MPE training with silence and short pause included in reference
(baseline), and excluded: Switchboard, h5train00sub (68h) training sets

specificity of the comparison seems to result in better generalization.

8.18.3 Silence in the reference transcription

As mentioned in Section 7.2.1, experiments reported here have, unless otherwise
indicated, used the technique named approximate MPE to differentiate the MPE
objective function; this is based on an approximate alignment using the time
information in the lattices. The silence and short pause models were by default
left in the reference (correct transcription) lattices but were given a phone ac-
curacy (PhoneAcc) of zero in the hypothesis (recognition) lattice. This allows
some phones to be counted as substitutions that might otherwise be counted as
insertions.

Since the exclusion of silence from the reference phones affects the insertion/deletion
ratio, some of the experiments described in this section were performed using an
error for an insertion that differs from 1 and an altered approximation for phone
correctness. This is done by replacing the two expressions in the approximation of
Equation (7.14) with the altered expressions —I +(1+1)e(q, z) and I(e(q,z) —1).
This improved recognition results relative to leaving I at 1, and kept the inser-
tion/deletion ratio (last column of Table 8.47) around the normal value.
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avg %WER ins/del
on csrnabl {dev,eval} ratio
Iteration

0 2 4 6 8 8

1-mix, MPE ug, E=2, 77=50 (baseline) |14.70 13.05 12.47 12.15 12.00] 0.82
(no silence, I =0.75)|14.70 12.98 12.40 12.13 12.04| 0.87

12-mix, MPE ug, E=2, 7/=50 (baseline)| 9.57 9.06 8.96 8.98 9.00 | 1.05
(no silence, I =0.75)| 9.57 9.27 9.39 9.40 9.33 | 1.07

)

(no silence, 7 =0.85)|14.70 12.97 12.33 12.09 12.10| 0.82
)
)

Table 8.47: Comparison between inclusion (baseline) and exclusion of silence in
reference phones: NAB

Table 8.46 shows the effect of excluding silence and short pause models from the
correct-transcription lattice when calculating phone accuracy, on a Switchboard
system. There is a 0.1% improvement on the eval98 test set and a 0.3% degra-
dation on the smaller eval97sub test set, so overall there is no change. On the
other hand, there is a degradation on the NAB corpus (Table 8.47) on systems
with either 1 or 12 Gaussians per state.

Note that a more appropriate way to remove silence from the reference tran-
scription might have been to redistribute the time of it between adjacent phones,
since this still leaves the approximation used in approximate MPE valid (i.e. the
approximated correctness will still be less than or equal to the true value). But
this was not tried since it would increase the complexity of the system.

The conclusion is that it is best to leave silence and short pause models in the
reference transcription, for approximate MPE. The fact that it is necessary to
leave the silence in the reference transcription for approximate MPE is a rather
unsatisfactory state of affairs; it would seem more elegant to use exact MPE,
which involves no such arbitrary features (except for altering the correctness of
an insertion) and does not consistently give either better or worse results than
approximate MPE.

8.18.4 MPE with variance flooring

In training of continuous HMMSs, variances are typically cut off at some min-
imum value. In systems built with HTK, a variance floor is typically set to
some small fraction of the variance of the data for each dimension (e.g. 1/100).
This particular detail is rarely mentioned in speech research publication, but
in [Lee, Giachin, Rabiner, Pieraccini & Rosenberg, 1992], it is mentioned that
variances are floored to the 20’th percentile of the distribution of variances in
the HMM set. That method was tried for MPE training, and found to give an
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improvement relative to the default approach used in HTK. The improvement
was around 0.1% absolute for MPE training with the default NAB setup, and
0.2-0.3% absolute for the default MPE training setup with the 68h h5train00sub
training set for Switchboard, evaluated on the eval98 test set. The variance floor
was applied after each iteration of updating the HMM with EB, using a floor
calculated from the HMM values after applying the EB update equations.

8.18.5 MPE and combination of language models

In experiments performed by H.Y. Chan in preparations for the Cambridge sub-
mission to the NIST RT03 evaluation for Conversational Telephone Speech, it
was found that by combining different language models a quite large improve-
ment of 0.5% absolute could be obtained relative to an initial WER of around
30%. These WERs were evaluated without MLLR speaker adaptation or gender-
dependent testing, and the baseline is the WER with one of the two original
language models (other experiments suggested the two independently were ex-
pected to give similar results). The way they were combined is by calculating
the statistics 5w, 65w (O), 0722 (O?) and the den and mle versions of the same
quantities, separately using the two language models, and adding them together
before each iteration of EB update. This corresponds to maximising an objective
function that looks like:

FuPE +

& > s PA(Or]5)*Pi(s)*RawPhoneAccuracy (s, s;,)
()\) = Z Z @) K P, K
r=1 up)\( 7‘|u) 1(“’)
> s PA(Or|s)* Py(s)*RawPhoneAccuracy (s, s,)
2w PA(Or )" Py (u)* '

where there are two sets of language model probabilities P;(s) and P»(s) as op-
posed to the normal objective function as given in Equation (7.2) which has only
one language model probability function P(s). The two language models used
here were a unigram and pruned bigram LM (i.e. a bigram where the bigram
entries which least affect the perplexity are pruned away), and the lattices con-
taining the different LMs were also created with different HMM sets, an ML and
MPE-trained HMM set. Note that the two different sets of lattices were created
with different HMM sets, one MLE-trained and one partially MPE trained, so
this may be partly responsible for the improvement gained from combining the
lattices.

(8.3)

This result needs to be treated with a little caution since if the two sets of lattices
were identical but were combined in this way, the effect would not be equivalent
to using one set of lattices but would be identical to the effect of reducing the
constraint 7! used in I-smoothing from 50 to 25. However, reducing 77 to 25 never
normally seems to help (Section 8.12) so this is not necessarily the explanation
for the improved results.
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8.19 Combination of discriminative training with
other techniques

Here follows a brief summary of experiments performed in Cambridge and else-
where (mostly by people other than myself, acknowledged where necessary) that
bear on the interaction of discriminative training with various other techniques.

8.19.1 Discriminative training with MLLR

This section summarises results relating to the combination of discriminative
training and MLLR speaker adaptation [Gales & Woodland, 1996], which were
obtained during experiments performed for the Cambridge University HTK sub-
mission for the NIST evaluation of Hub-5 (Switchboard) systems.

Other experiments mentioned here relate to Speaker Adaptive Training (SAT),
which is the training of a HMM set so as to maximise the likelihood of the data
when the HMM set is transformed using MLLR for each training speaker.

MPE with MLLR and SAT

In the 2002 NIST evaluation for hub5 (Switchboard) [Woodland et al., 2002],
in a system which already included HLDA, MPE training improved WER on
the devOlsub test set from 33.3% and 30.1% (9.6% relative); with MLLR the
change was from 30.7% to 28.5% (7.2% relative). The difference between ML-
SAT (Speaker Adaptive Training) and MPE-SAT was from 29.7% WER to 28.0%
(5.7% relative), so both MLLR and SAT reduce the relative improvement from
MPE but both improve the absolute performance of the MPE-trained system.
That is, MPE give 9.6% relative improvement on its own but 7.2% when baseline
and MPE systems were adapted with MLLR, and 5.7% with MLLR and SAT.

MMI with MLLR

In [Woodland & Povey, 2002], MMI training was compared with MLE in sys-
tems with and without MLLR. Training was on the h5train00 (265h) training
set and testing was on the eval98 test set. Without MLLR, MMI (full-search
implementation with E=1) improved results from 44.6 to 42.5 (4.7% relative);
with MLLR, the improvement was from 42.1 to 39.9 (5.2% relative). In this case,
the improvement was not decreased by MLLR.

Results reported in [McDonough et al., 2002] tested with a small HMM set on
the English Spontaneous Scheduling Task (ESST). The finding was that MMI

works well in combination with MLLR and SAT, but may not work well with
MLLR alone.
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The overall conclusion from these experiments is that the improvements from
discriminative training and MLLR and MLLR+SAT may not always be entirely
additive, but MMI will generally still give some improvement.

8.19.2 MPE with HLDA

On the evaluation system reported in [Woodland et al., 2002], MPE without
HLDA (and without MLLR adaptation) gave an improvement from 35.1% 31.4%
(10.5% relative). With HLDA (and without MLLR) the improvement was from
33.3% to 30.1% (9.6% relative). Based on these results there appears to be little
interaction between MPE and HLDA, although again the relative improvement
from combining the two techniques is less than additive.

8.20 Summary

This chapter has presented experiments on MPE and MWE on a variety of cor-
pora. General conclusions from these experiments include:

e MPE consistently gives more improvement than MMI.

e The improvement from discriminative training rises as the amount of train-
ing data per Gaussian increases.

The main conclusions regarding the implementation of MPE are:

e The probability scale « is best set to around the inverse of the normal lan-
guage model scale factor (which tends to be in the range 10-15) or perhaps
to a smaller value under some conditions.

e The lattices for training of MPE should be made with a sufficiently wide
pruning beam; MPE is less sensitive to the lattice size than MMI.

e The smoothing constant E which controls training speed can generally be
set to 2, or set to a value starting at 1 and increasing by 0.25 on each
iteration.

e The language model in the training lattices should be a unigram or highly
pruned bigram language model.

e The value 7! for I-smoothing is best set to around 50; it can also be set on
a dimension-specific basis which gives better results.

e Exact MPE gives about the same improvement as approximate MPE; it
can help slightly for exact MPE to give slightly less emphasis to insertion
errors (1=0.9).
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e The improvement from other techniques such as MLLR and HLDA is gener-
ally less than additive with the improvement from discriminative training.
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Chapter 9

Conclusions

9.1 MMI implementation

Work presented in this thesis investigated a number of issues relating to the
implementation of MMI training for large vocabulary speech recognition. The
main results of this research are as follows:

e Recognition lattices can be used to speed up MMI training.
e Scaling down probabilities during lattice alignment improves test set results.

e Best results were acheived by using the exact model boundaries from the
lattice.

e Other factors important to the implementation are the language model used
in the lattice, and the update equations.

e MMI training gives consistent improvements of the order of 5-10% relative
on large vocabulary corpora.

The value of this research is, firstly, that this implementation of MMI is the first
published example of an MMI training setup that reliably gives improvements
across different large vocabulary corpora; and, secondly, that various aspects
of the training process which are of practical importance have been investigated.
The hope is that this research should make it considerably easier for other groups
to implement discriminative training.

9.2 Theory for discriminative training

The concept of strong-sense and weak-sense auxiliary functions was introduced,
which provides a relatively easy way to derive the Extended Baum-Welch update
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for means and variances and also leads to and novel approach to the optimisation
of Gaussian weights and transitions. Strong-sense auxiliary functions are the
auxiliary function

A weak-sense auxiliary function is a function with the same gradient as the objec-
tive function, around the local parameter values. These auxiliary functions make
it possible to conveniently derive effective update rules when other approaches
such as Estimation-Maximisation or gradient descent are not easily applicable.

9.3 MPE

A new discriminative objective function called Minimum Phone Error (MPE) has
been introduced. MPE is a smoothed approximation to the error rate of a word
recogniser applied to the training set, where this error rate is evaluated on a phone
basis for better test-set generalisation. Experiments on various corpora show
that MPE reliably gives improvements over MMI, as long as prior distributions
over the Gaussian parameters are used to give robust parameter estimates, in a
technique named I-smoothing.

Many aspects of the MPE training procedure have been investigated experimen-
tally on a number of corpora, primarily Switchboard, Broadcast News and North
American Business news. These experiments compared MPE training with MMI
training under a variety of conditions and investigated various aspects of the
MPE training procedure such as the method of calculating the differential of
the objective function, and other aspects of MPE training such as the language
model and the probability scale. More general issues were also investigated, such
as how discriminative training is affected by the size of HMM set and the amount
of training data. Results on the combination of MPE with other techniques such
as MLLR adaptation were also reviewed.



Appendix A

Experimental setup

Testing was performed using the following corpora

e Switchboard using 265 hours of training data, and 65 hour and 18 hour
subsets

e North American Business News (NAB; also known as “Wall Street Jour-
nal”) with 66 hours of training data

e Broadcast News (BN) training on a 72 hour subset of data

e The speaker independent training setup on Resource Management (RM)
with 3.8 hours of training data.

This appendix describes the training data and experimental conditions used for
experiments described in this thesis. Section A.1 describes the common features
of these systems; Section A.2 describes the training and testing data used for
each corpus, and Section A.3 explains the conditions of the creation of lattices
for discriminative training.

A.1 Baseline system: common features

The input data for the most of the systems consists of PLP coefficients [Hermansky, 1990]
derived from a mel-scale filter bank (MF-PLP) with 13 coeflicients including the

log energy cy, and their first and second-order differentials. The Resource Man-
agement system used the same configuration except using Mel Frequency cepstral
coefficients (MFCC). These differences are summarised in Table A.2 along with

the different forms of mean and variance normalisation. Note that mean and vari-

ance normalisation is performed per conversation side in the case of Switchboard,

and on a per-segment basis for the other systems.
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Training Number of Hours of # Gauss/ # Gauss/hour
Set States  Training  state training
Switchboard: Minitrain 3088 18 12 2060
Switchboard: Minitrain 3088 18 6 1030
Switchboard: hbtrain0Osub 6168 68 12 1090
Switchboard: h5train00 6168 265 16 370
Broadcast News 6684 72 12 1110
WSJ/NAB (Acoustic Channel 1)| 6399 66 12 1160
Resource Management 1582 3.8 6 2500

Table A.1: Sizes of model sets and training databases

The HMMs used were gender independent cross-word triphones built using decision-
tree state clustering [Young et al., 1994|. Each state had the same number of
Gaussians, except states in the silence and “short pause” HMMs, which had
twice the given number of Gaussians. Short pause models are like silence but
have a “skip transition” whereby the model is bypassed; words can be followed
by either silence or short pause, with silence but not short pause being counted
for purposes of choosing context-dependent models. Conventional MLE training
was used to initialise the HMMs prior to discriminative training.

Unless otherwise specified, recognition experiments for Switchboard and NAB
used lattice rescoring of word lattices derived using ML-estimated HMMs with a
trigram language model. The use of lattices in this way increases the speed of
recognition. Recognition for Broadcast News was done using single-pass decoding
with a trigram language model. Recognition for Resource Management uses
single-pass decoding with word-pair grammar with no language model likelihoods
except a word insertion penalty.

The pronunciation dictionaries used in training and test for all tasks except RM
were originally based on the 1993 LIMSI WSJ lexicon, but have been considerably
extended and modified; the RM dictionary is made by SRI.

Table A.1 summarises the sizes of the model sets and training databases used in
the various systems.

A.2 Data sets

A.2.1 Switchboard system

Three different training sets were used in Switchboard evaluation. These are
the Minitrain, h5train0Osub and hbtrain00 sets, consisting of 18, 68 and 265
hours of data respectively (see Table A.3). The Minitrain set, defined by BBN,
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Training Signal Mean/Variance
Set Parametrisation Normalisation
Switchboard PLP-MFCC, 13+A+AA Means & variances
Broadcast News PLP-MFCC, 13+A+AA Means
WSJ/NAB (Acoustic Channel 1) |PLP-MFCC, 13+A+AA Means
Resource Management MFCC, 13+A+AA None

Table A.2: Input parametrisation

Training Total |Number of Conversation Sides
Set Time (hrs) |SWB1 CHE
Minitrain 18 398 -
h5train00sub 68 862 92
h5train00 265 4482 235

Table A.3: Training sets used on Switchboard

used BBN-provided transcriptions, while the h5train00 sets used transcriptions
based on those provided by Mississippi State University (MSU) in their January
2000 release. All the training sets contain data from the Switchboard I (SWB1)
corpus and the h5train00 sets also contain Call Home English (CHE) data. The
h5train00sub set is a subset of h5train00 and covers all of the training speakers
in the SWBI1 portion of h5train00, and a subset of the CHE data.

The sizes of the HMM sets used for the three systems are given in Table A.1. For
experiments using the Minitrain subset two different sizes of HMM were used for
different experiments, as shown in the table.

Two test sets were used: eval98 and the smaller eval97sub set. These consist
respectively of the 1998 Hub5 evaluation data set, containing 40 sides of Switch-
board IT (SWB2) and 40 CHE sides (in total about 3 hours of data); and a subset
of the 1997 evaluation set, containing 10 conversation sides of SWB2 data and
10 of CHE.

A.2.2 NAB (Wall Street Journal) system

The NAB system used HMMs trained on the channel 1 (close-talking microphone)
channel of the SI-284 Wall Street Journal database (66 hours of data). This data
is low noise and contains read speech.

The NAB-trained HMMs were tested on the 1994 DARPA Hubl development
and evaluation test sets, denoted csrnabl_dt and csrnabl_et respectively, with a
combined length of about 50 minutes, and are scored by lattice rescoring of 65k
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word vocabulary trigram lattices. This setup is the same as reported for Frame
Discrimination (FD) training in [Povey & Woodland, 1999] and for MMI and FD
training in [Povey & Woodland, 2001].

A.2.3 Broadcast News system.

The Broadcast News database consists of recorded television shows. The BN
system was trained using the 72 hour 1997 training data set (BNtrain97). The test
data is the 1996 “partitioned evaluation” development test data (BNdev96pe),
which is partitioned into 6 different “focus conditions” (Table A.4). The overall
length of the test data is about 2.1 hours.

Focus Description % of all data
FO baseline broadcast speech (clean, planned) 29.7%
F1 spontaneous broadcast speech (clean) 32.7%
F2 low fidelity speech (wideband/narrowband) 8.7%
F3 speech in the presence of background music 7.0%
F4 speech under degraded acoustical conditions 9.1%
F5 non-native speakers (clean, planned) 1.5%
F6 |all other speech (e.g. spontaneous non-native) 11.4%

Table A.4: Focus conditions for Broadcast News 1996 Partitioned Evaluation test
set.

Testing was by single-pass decoding with a 65k word trigram language model.

A.2.4 Resource Management system.

The Resource Management database consists of clean read speech from a lim-
ited vocabulary task consisting of commands to an (imaginary) computer system
relating to a shipping database. The RM system was trained on the speaker
independent portion of the Resource Management training dataset, 3.84 hours of
data. Testing was on the four speaker independent test sets, dated February ’89,
October ’89, February '92 and September ’92, 300 sentences in all (about 2500
words).

A.3 Lattice creation

For all sets of experiments except Resource Management, word lattices for MMIE
training were created using a bigram language model. Unless stated otherwise,
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General Word-end Lattice-output|Lattice
beam beam beam depth
First pass (bigram)
Switchboard| 200 105 150
NAB 225 115 200
BN 210 110 175
Second pass (unigram)
Switchboard| 225 125 175 125
NAB 225 125 200 16
BN 225 125 200 172

Table A.5: Lattice pruning beams

unigram probabilities were actually applied to these lattices for MMIE train-
ing. More recent experiments (Section 8.11) show that it is probably better to
use unigram probabilities in all stages of lattice generation. Language model
probabilities were applied with the same scales and insertion penalties normally
used for testing. Word lattices for Resource Management were created using an
unconstrained language model (all word-pairs allowed) with no language model
likelihoods except a word insertion penalty.

Table A.5 shows the pruning beams used to generate the lattices on the three
large corpora, and the average lattice depths (average number of word instances
crossing each time) for each corpus. The smaller size for NAB is due to the data
being less confusable in that corpus. These figures are thresholds on natural-log
likelihood of paths in the lattice, relative to the log likelihood of the best path.



156 APPENDIX A. EXPERIMENTAL SETUP



Bibliography

[Amari, 1967] Amari, S. (1967). “A Theory of Adaptive Pattern Classifiers”,
IEEFE Transactions on Electronic Computers, vol. EC-16, no. 3, pp. 299-307.

[Bahl et al., 1986] Bahl, L. R., Brown, P. F., de Souza, P. V., & Mercer, R. L.
(1986). “Maximum mutual information estimation of hidden Markov model
parameters for speech recognition”, Proc. ICASSP’86, vol. 1, pp. 49-52.

[Bahl et al., 1996] Bahl L. R., Padmanabhan M., Nahamoo D., Gopalakrishnan
P. S. (1996). “Discriminative training of Gaussian mixture models for large
vocabulary speech recognition systems,” Proc. ICASSP’96, vol. 2, pp. 613-
616.

[Baker, 1975] Baker, J. K. (1975). “The dragon system - An overview”, IEEE
Trans. Acoust. Speech Signal Process., vol. 23, pp. 24-29.

[Baum et al., 1970] Baum L., Petrie T., Soules G., & Weiss N. (1970). “A maxi-
mization technique occuring in the statistical analysis of probablistic functions
of Markov chains.” The Annals of Mathematical Statistics, vol. 41, no. 1, pp.
164-171.

[Bauer, 2001] Bauer, J. G. (2001). “On the Choice of Classes in MCE based
discriminative HMM-Training for Speech Recognizers used in the Telephone
Environment”, Proc. Eurospeech’01, Session D15.

[Bellegarda & Nahamoo, 1989] Bellegarda J. & Nahamoo D. (1989). “Tied mix-
ture continuous parameter models for large vocabulary isolated speech recog-
nition,” Proc. ICASSP’89 pp.13-16.

[Bellegarda & Nahamoo, 1990] Bellegarda, J. and Nahamoo, D. (1990). “Tied
mixture continuous parameter modeling for speech recognition.”, IEEE

Transactions on Acoustics, Speech, and Signal Processing, 1990, pp. 2033-
2045.

[Chou et al., 1993] Chou W., Lee C.H., Juang B.H. (1993). “Minimum Error
Rate Training Based On N-Best String Models”, Proc. ICASSP’93, Min-
neapolis, pp. 652-655.

157



158 BIBLIOGRAPHY

[Chow, 1990] Chow Y.L. (1990). “Maximum Mutual Information Estimation of
HMM Parameters for Continuous Speech Recognition Using the N-Best Al-
gorithm”, Proc. ICASSP’90, Albuquerque.

[Davis & Mermelstein, 1980] Davis, S.B.; Mermelstein, P. (1980). “Comparison
of parametric representations for monosyllabic word recognition in continu-
ously spoken sentences”, IEEE Trans. Acoust. Speech Signal Proc., vol. ASSP-
28, pp. 357-366.

[Dempster et al., 1977] Dempster A.P., Laird N.M. & Rubi D.B. (1977), “Max-
imum Likelihood from Incomplete Data via the EM Algorithm”, Journal of
the Royal Statistical Society, vol. 39, pp. 1-88.

[Gales & Woodland, 1996] Gales M.J.F. & Woodland P.C. (1996). “Mean and
Variance Adaptation Within the MLLR Framework”, Computer Speech &
Language, vol. 10, pp. 249-264.

[Gauvain & Lee, 1994] Gauvain, J & Lee, C. (1994). “Maximum a posteriori es-
timation for multivariate Gaussian mixture observations of Markov chains”,
IEEE Transactions on Acoustics, Speech and Signal Processing 1994, vol. 2,
no. 2, pp. 291-299.

[Gillick, L., and Cox, S.J.] Gillick, L. & Cox, S.J. (1989). “Some statistical issues
in the comparison of speech recognition algorithms,” Proc. I[CASSP: 532-535,
Glasgow, May 1989.

[Gopalakrishnan et al., 1988] Gopalakrishnan P.S., Kanevsky D., Nadas A.,
Nahamoo D., Picheny M.A. (1988) “Decoder Selection Based on Cross-
Entropies”, ICASSP’88, vol. 1, pp. 20-23.

[Gopalakrishnan et al., 1989] P.S. Gopalakrishnan, D. Kanevsky, A. Nadas, and
D. Nahamoo (1989). “Generalization of the Baum algorithm to rational ob-
jective functions”, Proc. ICASSP’89, pp. 631-634.

[Gunawardana, 2001] A. Gunawardana (2001). “Maximum Mutual Information
Estimation of Acoustic HMM Emission Densities,” CLSP Research Note no.
40.

[Haeb-Umbach & Ney, 1992] Haeb-Umbach R. & Ney H. (1992). “Linear Dis-
criminant Analysis for Improved Large Vocabulary Continuous Speech Recog-
nition”, Proc. ICASSP’92, San Francisco, vol. 1, pp. 13-16.

[Hermansky, 1990] Hermansky, H. (1990). “Perceptual linear predictive (PLP)
analysis of speech”, Journal of the Acoustical Society of America, vol. 87, pp.
1738-1752.



BIBLIOGRAPHY 159

[Hermansky, Morgan, Bayya & Kohn, 1991] Hermansky, H., Morgan, N., Bayya,
A, and Kohn, P (1991). Rasta-PLP Speech Analysis. ICSI Technical Report
TR-91-069, Berkeley, California.

[Huang & Jack, 1989] Huang X. D., Jack M. A. (1989). “Semi-continuous hidden
Markov models for Speech Signals”, Computer Speech and Language, vol. 3,
no. 3, pp- 239-252.

[Juang, 1985] Juang B.-H. (1985). “Maximum-Likelihood Estimation for Mixture
Multivariate Stochastic Observations of Markov Chains,” ATéT Technical
Journal, July-August 1985, vol. 64, no. 6.

[Juang & Katagiri, 1992] Juang, B.-H. & Katagiri, S. (1992). “Discriminative
Learning for Minimum Error Classification”, IEEE Transactions on Signal
Processing, vol. 40, no. 12, pp. 3043-3053.

[Juang et al., 1997] Juang, B.H., Chou, W., and Lee, C.H. (1997). “Minimum
classification error rate methods for speech recognition”, IEEE Transactions
on Speech and Audio Processing, May 1997, vol. 5, pp. 266-277.

[Kaiser et al., 2000] J. Kaiser, B. Horvat & Z. Kacic, “A Novel Loss Function
for the overall risk-criterion based discriminative training of HMM models,”
ICSLP’2000.

[Kaiser et al., 2002] J. Kaiser, B. Horvat & Z. Kacic, “Overall risk criterion es-
timation of hidden Markov model parameters”, to appear in Speech Commu-
nication.

[Kapadia, 1998] Kapadia S. (1998). Discriminative Training of Hidden Markov
Models, Ph.D. thesis, Cambridge University Engineering Dept.

[Kumar & Andreou, 1998] Kumar N. & Andreou A. G. (1998) “Heteroscedastic
discriminant analysis and reduced rank HMMs for improved speech recogni-
tion”, Speech Communcation, vol. 26, pp. 283-297.

[Lee, Giachin, Rabiner, Pieraccini & Rosenberg, 1992] Lee C-H., Giachin E,
Rabiner L.R., Pieraccini R. & Rosenberg A.E. (1992). “Improved Acoustic
Modeling for Large Vocabulary Continuous Speech Recognition,” Computer
Speech and Language 6, pp. 103-127.

[Lee & Rose, 1996] Lee, L., & Rose, R. (1996). “Speaker Normalization using
Efficient Frequency Warping Procedures”, Proc. ICASSP ’96, Atlanta, GA,
pp- 353-356.

[Leggetter & Woodland, 1995] Leggetter, C. J. & Woodland, P. C. (1995). “Max-
imum likelihood linear regression for speaker adaptation of continuous density
HMMSs”, Computer Speech and Language, vol. 9, pp. 171-186.



160 BIBLIOGRAPHY

[Lowerre, 1976] Lowerre, B. T. (1976). “The Harpy Speech Recognition System”,
Ph.D. Thesis, Carnegie Melon University

[Mangu et al., 2002] Mangu L., Brill E. & Stolcke A. (2000). “Finding consensus
in Speech Recognition: Word Error Minimization and Other Applications of

Confusion Networks.” Computer, Speech and Language, vol. 14(4), pp. 373-
400.

J. McDonough, T. Schaaf & A. Waibel (2002). “On Maximum Mutual Infor-
mation Speaker-Adapted Training”, ICASSP 2002.

[McDonough et al., 2002] J. McDonough, T. Schaaf & A. Waibel (2002). “On
Maximum Mutual Information Speaker-Adapted Training”, ICASSP 2002.

[Merialdo, 1988] Merialdo B. (1988) “Phonetic Recognition using Hidden Markov
Models and Maximum Mutual Information Training”, Proc. ICASSP’88, pp.
111-114.

[Na et al., 1995] K. Na, B. Jeon, D. Chang, S. Chae, S. Ann, “Discriminative
training of hidden Markov models using overall risk criterion and reduced
gradient method”, Proc. Eurospeech’95, vol. 1, pp. 97-100.

[NIST, 2001] NIST Large Vocabulary Speech Recognition Workshop, May 3-
4 2001: National Institute of Standards € Technology, Gaithersburg, Md.
http://www.nist.gov/speech /tests/ctr/h5_2001/postwshp.htm

[Normandin, 1991] Normandin Y. (1991). Hidden Markov Models, Mazimum
Mutual Information Estimation and the Speech Recognition Problem. Ph.D.
thesis, Dept. of Elect. Eng., McGill University, Montreal.

[Normandin & Morgera, 1991] Normandin Y., Morgera S.D. (1991). “An Im-
proved MMIE Training Algorithm for Speaker-Independent, Small Vocabu-
lary, Continuous Speech Recognition”, Proc. ICASSP’91, vol. 1, pp. 537-540.

[Normandin et al., 1994] Normandin Y., Lacouture R., Cardin R. (1994).
“MMIE Training for Large Vocabulary Continuous Speech Recognition”,
Proc. ICSLP’9/, pp. 1367-1370.

[Paul, 1990] Paul D. B. (1990). “The Lincoln Tied Mixture HMM Continuous
Speech Recogniser”, Proc DARPA Speech and Natural Language Workshop,
Hidden Valley, Pennsylvania, pp. 332-336.

[Povey & Woodland, 1999] Povey D. & Woodland P.C. (1999). “Frame Discrim-
ination Training of HMMs for Large Vocabulary Speech Recognition” Proc.
ICASSP’99, Phoenix, pp. 333-336.



BIBLIOGRAPHY 161

[Povey & Woodland, 2001] Povey D. & Woodland P.C. (2001). “Improved Dis-
criminative Training Techniques for Large Vocabulary Continuous Speech
Recognition”, Proc. ICASSP’01.

[Povey et al., 2003] Povey D., Gales M.J.F. & Woodland P.C. (2003). “Discrim-
inative MAP for Acoustic Model Adaptation,” Proc. ICASSP’03.

[Rabiner, Juang, Levinson & Sondhi, 1985] Rabiner, L. R., Juang, B. H., Levin-
son, S. E.; & Sondhi, N. M. (1985). “Recognition of Isolated Digits Using
Hidden Markov Models With Continuous Mixture Densities”, ATéT Tech.
J., vol. 64, pp. 1211-1234.

[Rabiner, 1989] L. R. Rabiner (1989). “A Tutorial on Hidden Markov Models
and Selected Applications in Speech Recognition”, Proceedings of the IEEE
(February, 1989), vol. 77 | no. 2, pp. 257-285.

[Rabiner, 1993] Rabiner L. & Juang, B-H (1993). Fundamentals of Speech Recog-
nition, Englewood Cliffs NJ: PTR Prentice Hall (Signal Processing Series),
ISBN 0-13-015157-2.

[Reichl & Ruske, 1995] Reichl W., Ruske G. (1995) “Discriminative Training for
Continuous Speech Recognition”, Proc. Eurospeech’95, vol. 1, pp. 537-540.

[Sakoe & Chiba, 1971] Sakoe, H. & Chiba, S. (1971). “A dynamic programming
approach to continuous speech recognition”, Proc. 7th ICA

[Saon et al., 2000] Saon, G., Padmanabhan, M., Gopinath, R., & Chen.,
S. (2000) “Maximum likelihood discriminant feature spaces”, Proc.
ICASSP’2000.

[Schluter et al., 1997] Schluter R., Macherey W., Kanthak S., Ney H., Welling
L. (1997). “Comparison of Optimization Methods for Discriminative Training
Criteria”, Proc. EUROSPEECH’97, pp. 15-18.

[Schluter & Macherey, 1998] Schluter R. & Macherey W. (1998). “Comparison
of Discriminative Training Criteria”, Proc. ICASSP’98, Seattle, pp. 493-496.

[Schluter et al., 1999] Schluter R., Muller B., Wessel F. & Ney H. (1999). “Inter-
dependence of Language Models and Discriminative Training”, Proc. IEEE
ASRU Workshop, Keystone, Colorado, pp. 119-122.

[Schluter, 2000] Schlueter R. (2000). Investigations on Discriminative Training,
PhD. thesis, Aachen university.

[Schwartz et al., 1985] R. Schwartz, Y. Chow, O. Kimball, S. Roucos, M. Kras-
ner, and J. Makhoul. (1985). “Context-dependent modeling for acoustic-
phonetic recognition of continuous speech” |, Proc. ICASSP’85, pp. 1205-1208.



162 BIBLIOGRAPHY

[Strik et al., 2000] Strik, H., Cucchiarini, C. and Kessens, J. (2000). “Comparing
the recognition performance of CSRs: In search of an adequate metric and
statistical significance test”, Proceedings of ICSLP’ 00, , Beijing, 740-744,
2000.

[Valtchev et al., 1996] Valtchev, V., Woodland, P.C., Young, S.J. (1996).
“Lattice-based discriminative training for large vocabulary speech recogni-
tion”, Proc. ICASSP’96, pp. 605-608.

[Valtchev et al., 1997] V. Valtchev, J.J. Odell, P.C. Woodland & S.J. Young
(1997). “MMIE Training of Large Vocabulary Speech Recognition Systems”,
Speech Communication, vol. 22, pp. 303-314.

[Vintsyuk, 1968] Vintsyuk, T.K. (1968). “Speech Recognition by dynamic pro-
gramming”, Kibernetika (Cybernetics), vol. 4, pp. 81-88.

[Welling et al., 1999] Welling L., Kanthak S., & Ney H. (1999). “Improved meth-
ods for vocal tract normalization”, Proc. IEEE Int. Conf. on Acoustics, Speech
and Signal Processing, Phoenix, AZ, pp. 761-764.

[Wolpert, 1994] Wolpert, D. H. (1994), “The relationship between PAC, the sta-
tistical physics framework, the Bayesian framework, and the VC framework”,
in D. H. Wolpert, ed., The Mathematics of Generalization, Addison Wesley.

[Woodland et al., 1995] P.C. Woodland, C.J. Leggetter, J.J. Odell, V. Valtchev
& S.J. Young (1995). “The 1994 HTK Large Vocabulary Speech Recognition
System”, Proc. ICASSP’95, Detroit, pp. 73-76.

[Woodland & Povey, 2000] P.C. Woodland & D. Povey (2000). “Large Scale Dis-
criminative Training for Speech Recognition”, Proc. ISCA ITRW ASR2000,
Paris, pp. 7-16.

[Woodland & Povey, 2002] P.C. Woodland & D. Povey (2002). “Large Scale Dis-
criminative Training of Hidden Markov Models for Speech Recognition”,
Computer Speech € Language, Jan 2002, vol. 16, no 1, pp. 25-48,

[Woodland et al., 2002] P.C. Woodland, G. Evermann, M. Gales, T. Hain,
A. Liu, G. Moore, D. Povey & L. Wang (2002). “CU-HTK April 2002 Switch-
board System,” NIST Rich Transcription Workshop, 2002.

[Young et al., 1994] Young, S.J., Odell, J.J. & Woodland, P.C. (1994) Tree-based
State Tying for High Accuracy Acoustic Modelling. Proc. ARPA Human Lan-
guage Technology Workshop, Plainsboro, NJ., pp. 307-312.

[Zheng et al., 2001] Zheng J., Butzberger J., Franco H., & Stolcke A. (2001).
“Improved Maximum Mutual Information Estimation Training of Continuous
Density HMMs”, Proc. Eurospeech’01, pp. 679-81.



