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ABSTRACT

Modeling phone durations in a word-specific fashion has pre-
viously been shown to lead to improvements in LVCSR recogni-
tion performance. We report results on the Switchboard database
which confirm that at least small improvements (around 0.2-0.3%
absolute) can be obtained. The duration probabilities are applied
to time-marked recognition lattices. Features of the system include
a novel data-driven method for smoothing discrete distributions,
and a form of discrete distribution which allows phone and word
lengths to be modeled simultaneously within a consistent proba-
bilitic framework.

1. INTRODUCTION

The framework for duration modeling used here in this work is
based on the approach used in [1], in which useful improvements
in WER of 0.7% to 1.0% are demonstrated on the Switchboard
database. That approach applied duration likelihoods to durations
obtained using alignment of N-best lists; the phone lengths in a
word were considered as a feature vector which was modeled us-
ing a mixture of Gaussians, and these lengths were trained sepa-
rately for each word. Words were modeled separately depending
on whether silence or non-silence followed, to account for the phe-
nomenon known as pre-pausal lengthening. For unseen words the
model backed off to phones and triphones.

In this work, an alternative approach based on smoothed dis-
crete distributions is described (Section 2) and compared with the
mixture-of-Gaussians approach; correlations between lengths of
different phones in a word are handled by a technique described
in Section 3. Prepausal lengthening is handled by a more general
technique of word-context clustering (Section 4). Experiments are
performed on the Switchboard database (Section 6).

2. SMOOTHED DISCRETE DISTRIBUTIONS

HMM durations in speech are difficult to model accurately with
Gaussians because they have a very non-Gaussian shape, including
a long tail and a sharp cutoff below the minimum duration of the
HMM. This makes a discrete distribution attractive for modeling
durations, i.e. having a separate p(t) for each integer 0 < t < T
for some upper limit 7. The main difficulty with this approach, as
with other discrete probability estimation problems (e.g. language
modeling) is that of unseen symbols. An elegant solution to this
problem has been devised which may also have relevance for other
tasks such as language modeling.
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2.1. Generalisation matrices

Suppose the task is to estimate a probability distribution over dis-
crete symbols; without loss of generality, let these be integers
t = 1...T (for durations this would start at zero). Let the train-
ing data for estimating a distribution consist of a fixed number of
examples N > 0. The naive approach would be to set p(t) =
f(t), where f(t) is the frequency of symbol ¢ in the training data,
f@&) = c(t)/N, if c(¢) is the count of symbol ¢ in the training
sample.

A better approach can be found, if we suppose that there are
in addition D example distributionsd = 1... D, eachwith N + 1
samples drawn from the distribution. (E.g. these would tend to
be distributions for a number of different classes, phones, words
etc.) These distributions have counts ¢4(¢). The idea is to use
these to train a so-called “Generalisation Matrix” M of size T'x T
which linearly transforms the probabilities, so that an observation
of symbol ¢ gets redistributed to symbol s with weight M;s. The
probability p(s) is now no longer f(s) but 37 | M. f(2).

2.2. Estimating M

The matrix M can be estimated from the example distributions in
a hold-one-out procedure where the likelihood of the held-out data
is maximised. The log-likelihood of the D(NN + 1) example ob-
servations, based on frequencies trained on the other N examples
from each distribution and transformed by M, is maximised. This
objective function can be written as:

D

F(M) =" "ca(t)log D _ ci(s,t)Ms:

d=1 t=1

where cj;(s,t) = cq(s) if s # t and c4(s) — 1 otherwise, to take
account of the held-out aspect of the training.
This expression can be maximised by E-M as follows. Starting

from a flat start Ms(f) = 1/T on iteration 0, on each iteration
n > 0 accumulate a matrix of counts
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Then the M-step of the optimisation is:
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The final value of M will tend to be closer to the identity matrix as
the number of training samples IV increases, because for larger N
less smoothing is needed to give optimal likelihoods for held-out
data.
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Fig. 1. Matrix M for HMM lengths of single-phone words: N=8

Note that in principle this technique requires estimating a dif-
ferent M for each number of training examples. In practice a dif-
ferent matrix M is used for each power of 2 of training examples
up to some limit, and for other numbers of samples the nearest M
is used from this set. In order to obtain a set of D distributions
each containing IV + 1 observations, when what is available is is a
different number of distributions containing a variable number of
observations, a sample is taken from those of the available distri-
butions which have at least IV + 1 observations, and exactly N +1
samples are randomly drawn from each of these sets of samples,
possibly repeatedly.

Note that a large value of D may be needed to ensure a ro-
bust estimate of the the matrix (e.g. 100,000/N is used here). The
elements of the matrix with large s or ¢ sometimes have no exam-
ples. An attempt has been made to smooth M by adding smoothed
counts to the count matrix C, which leads to a more reasonable-
looking M but has no appreciable effect on WER.

3. MODELING CORRELATIONS

In [1], correlations between the lengths of the phones in each word
are modeled using a mixture-of-Gaussians approach. In this work
the correlations are modeled as follows.

3.1. Optimising non-orthogonal distributions

Suppose the task is to estimate a probability distribution p(x). One
very general class of distributions is a product of individual func-
tions ¢;(g), for1 <i < I:

p(x) = q1(91(x))q2(92(x)) - - - gr (g1 (x))- €]

where the functions g;(x) are scalar functions of the vector x
which each project it onto a single dimension. The functions ¢;(g)
are multiplied to make the final distribution but cannot be consid-
ered probabilities for non-orthogonal g; (x). The projections g;(x)
are not necessarily linear functions and not necessarily orthogonal.

The optimisation of ¢;(g) is possible in the continuous case
(assuming the projection of the current distribution can be calcu-
lated) but it is much easier to demonstrate for the discrete case.

The objective is to maximise the probability of the observed data
while maintaining the sum-to-one constraint of the overall distri-
bution. Maximising the probability of the observed data in isola-
tion would be simple once the appropriate statistics of the training
data in the projection g;(x) are known. Maintaining the sum-to-
one constraint involves knowing the projected distribution of the
current distribution p(x) with the function g;(x). The enforce-
ment of the sum-to-one constraint involves more than finding a
normalising factor; it also affects the shape of the distribution.

In the discrete case (i.e. where g;(x) is a discrete function of
a discrete or continuous vector x), the solution for ¢;(g) is:

fi(g)
pi(g)’

2i(9) = 4i(9) )
where §;(g) is the old value of ¢;(g), fi(g) are the projected fre-
quences of the training data points using g;(x) and, p;(g) are the
projected frequencies of the current distribution p(x) using g;(x).

This can be thought of as scaling a fraction p;(g) of the distri-
bution so that it becomes the optimal fraction f;(g). Calculating
and storing the data frequencies f;(g) will in general be easy. Cal-
culating the projected distribution p;(g) of the current distribution
p(x) is more difficult, although in the special case that will be used
for duration modeling it will be tractable.

3.2. Accumulated length probability model

In the accumulated length probability model (ALPM), if a word
has N phones with lengths 1 = 1 ...l there are 2N projec-
tions. The first IV projections are the individual lengths, so g1 (1) =
I, etc. The last N projections are the accumulated lengths, so
gn+1(L) = U1, gn42(l) = 11 + l2, etc. This allows efficient opti-
misation of the functions ¢;(g).

3.2.1. Optimisation technique

On the first iteration of optimisation, the functions g; (1) for i =
1... N are set to the observed frequencies f;(I) and the other ¢
functions are all setto 1,50 ¢;(I) =1 for N + 1 <4 < 2N. Sub-
sequently, each ¢ in turn is taken and ¢;(-) is updated, and this is re-
peated for a number of iterations. The functions g; (1) are updated
according to Equation 2. The old functions §;(l) are of course
known,; the frequencies f;(1) are accumulated from the examples
of the word in the training data and stored in an array; the most
complicated part is calculating p; (7). This is done as follows.

Define a; (1) as the probability that the sum of phone lengths
l1...1; equals I, given only the terms ¢;(-) and g;+~ (+) up to and
including the ¢’th phone length (and sum of phone lengths).

Fori =0, a;(l)issettolforl =0andto0forl1 <! <T.
For ¢ > 0 it is calculated recursively as follows:

ai(l) = Y aimi(m)gi(l — m)gn+i(l). @)

Note that the length  varies from 0 to 7" in this notation, since
HMMs can have zero length in HTK.

We define 3; (1) as the the probability that the sum of phone
lengths I; ... 1; equals Z, but including only the terms after ¢. This
is defined so that the a and 3 terms multiply to give px+; (1) which
is the probability of the first ¢ phones summing to /. So the last 3,



Bn (1), equals 1, and the preceding ones are calculated as follows:

T

Bi(l) = > gir1(m — Dan+ir1(m)Bir1(m). @)

m=l

Now, the projections of the distribution can be calculated as fol-
lows:

pN+i(1) =0 (1)Bi (1) )
T-—1

pi)=_ cim1(m)@s(Dgi+n (L +m)Bita(I+m) (6)
m=0

where the expression for the probability p; () involves a sum over
the length m of the lengths I, ...1;_1. As a check, note that the
equality 3", pi(1) = 1 should hold for each 1 < i < 2N, on
each iteration.

Prior to training the ALPM, the frequencies f; (1) are smoothed
as described in Section 2 When applying the update to the ¢;(-)
functions in Equation 2, a limit must be put on the factor by which
the values can change, to avoid overflow and underflow. This
can happen because the smoothing leads to incompatible distri-
butions. The use of the ALPM leads to a small improvement in
WER as compared with modeling the phones independently (see
Section 6).

4. WORD CONTEXT CLUSTERING

In order to provide more specific modeling of words in context,
each word can potentially be modeled separately for each phone
context (i.e. the phones before and after the word). Since there
obviously will not be enough training data for each context, the
contexts are clustered. Most words will only appear in a few con-
texts, so it is difficult to generate a separate clustering tree for each
word; hence, a global tree is used. This makes it possible to do
without hand-crafted clustering questions and to use a completely
data-driven approach.

A top-down clustering algorithm is performed, in which the
contexts are initially all in one cluster, this cluster is split in two
and then the child nodes are split recursively. For each cluster
to be split, it is either split using the following phone context or
the preceding phone context, whichever would give the highest
increase in likelihood. The likelihood distributions are Gaussian
(for speed), with a floor on the variance. When splitting a cluster
according to, say, the preceding context, the preceding phones cur-
rently in the cluster are split randomly into two groups. Then for
each preceding phone, the likelihood change that would result if
words with that phone context were switched to the other cluster,
is worked out. If positive, the phone is moved to the other clus-
ter. Working out this likelihood change involves summing over
all words, the log likelihood change that would result from model-
ing that word’s phone lengths with differently clustered Gaussians.
Note that these likelihood changes are worked out based on the as-
sumption that the Gaussians’ means and variances are recalculated
when the clusters are changed, unlike conventional K-means clus-
tering in which the objective function change is worked out based
on fixed cluster centers. This difference is critical because word
contexts will often be moved to a cluster that is previously empty
as far as that particular word is concerned (this is possible because
the tree is shared globally). This process of moving phones from
cluster to cluster is repeated until there is no further change.

When using the tree to work out likelihoods for an example of
aword (in a test-set word lattice), the tree is traversed from the top
down to reach the node has the most specific context with more
than a certain number of training examples (e.g. 200). If less than
that number of examples are present at the top level for that word,
the top node is used (smoothing means that even one observation
will give a reasonable distribution). If there are less examples of
the word than a smaller threshold (e.g. 10), the algorithm backs off
to using likelihoods for each phone-in-context in the word, or, if
unseen, the clustered phone-in-context as determined by the clus-
tering used for the acoustic model.

The use of clustering gives a small improvement (about 0.2%)
in WER, of which about half is obtainable with a single split in the
tree. This single split roughly corresponds to prepausal lengthening—
it is found that the top node splits according to the following con-
text, with one node including silence and a few phones of the kind
that occur in hesitations (um, er, etc.) and the other node including
all other phones.

5. FURTHER DETAILS

Silences and short-pause models which occur at word-end in HTK,
are considered as separate words for duration modeling purposes,
and are modeled as separate single-phone words. Phone context is
used for these words, as for normal words. As for normal phone
clustering in HTK, the “short pause” model is considered invisi-
ble for purposes of calculating phone context. Experiments show
that using silence contexts gives a small improvement or no differ-
ence relative to not using context. Different pronunciations of each
word are considered as separate words for purposes of modeling
durations.

6. EXPERIMENTS

6.1. Experimental setup

Experiments were on the Switchboard corpus, using the same Switch-
board training data (360h in total) as used to train the Cambridge
submission to the 2003 NIST evaluation [3]. Duration models
were trained as described above on the phone-aligned transcrip-
tions of the training data, with the maximum time 7" that was mod-
eled separately being 100. Clustering of word context was per-
formed as above, with 200 being the minimum training examples
needed before a cluster-node was used in testing; below 1 example,
phone-in-context probabilities were used. Testing was on the 2002
and 2003 test sets. This was done by adding duration probabil-
ities to lattices that were generated for lattice-rescoring purposes
during the 4th pass of the Cambridge system [3], and then finding
the best pass through the lattices using a scale of 4 on the duration
probabilities and a phone-insertion probability of 4 (to normalise
the insertion/deletion ratio). The lattices used were generated with
models that used MPE, HLDA, VTLN, and MLLR including lat-
tice MLLR and full-variance transforms.

6.2. Experimental results

Table 1 shows the effect on WER of duration modeling on Switch-
board. The duration modeling approach described here (marked
“baseline™) gives a 0.3% improvement on eval02 and 0.2% on
eval03. This is disappointing when compared with the gains of up
to 1.0% reported in [1] on the same corpus. Removing some of the



%WER log p/word
eval02 eval03 || eval02 eval03
No durs 24.9 24.2 n/a n/a
Durs (baseline) 24.6 24.0 -8.406  -9.21
Durs (uncorrelated) 24.8 24.1 -8.63 -9.41
Durs (phones) 25.0 24.3 -8.70 -9.48

Table 1. Duration modeling on Switchboard

%WER log p/word
eval02 evalO3 || eval02 eval03
No durs 24.9 24.2 n/a n/a

Durs (baseline) 24.6 24.0 -8.41 -9.21
Durs (gauss-mix) | 24.7 24.0 -9.15 -9.86

Table 2. Discrete model (ALPM) vs mixture-of-Gaussians

complexity of the system degrades likelihood and WER. Model-
ing the individual phones of words with indepenent discrete distri-
butions (“uncorrelated”) makes the results about 0.1-0.2% worse.
The third line of the table shows the modeling where only the
phone-in-context is used for duration modeling, i.e. the word iden-
tities are ignored. This slightly degrades likelihood but sharply
degrades WER, which then becomes worse than doing no dura-
tion modeling. This is surprising because duration is an acoustic
phenomenon, and if the normal phone clustering is sufficient for
normal acoustic modeling, it ought to be sufficient for durations as
well. This appears not to be the case.

Table 2 compares mixture-of-Gaussians modeling of the vec-
tors of phone lengths in a word (as in [1]) with the discrete ap-
proach using the ALPM as described here. The number of Gaus-
sians used was (n/10)°-® if there were n training examples. The
Gaussian-based system used a cluster-depth of 1 (see below) in
case a larger depth gave rise to generalisation problems. (Smoothed
discrete modeling was used for the backoff to phones, but this
probably makes little difference). Although the use of Gaussians
makes the likelihoods considerably lower, the error rate is only
0.1% worse than the techniques descibed here on eval02 and iden-
tical on eval03. Since the results are so much poorer than [1], it is
not clear whether the implementation of the Gaussian-based tech-
nique was very optimal.

Table 3 shows the effect of limiting the clustering depth used

in clustering the contexts of words. Removing all clustering (depth=0)

gives a small degradation (0.1% on both test sets) but using only
one split in the clustering tree gives the same results as using the
entire tree. As mentioned previously, this seems to be modeling
prepausal lengthening; it splits according to the following context,

%WER log p/word
eval02 eval03 || eval02 eval03
No durs 24.9 24.2 n/a n/a
Durs (clust-depth=max) 24.6 24.0 -8.41 -9.21
Durs (clust-depth=1) 24.6 24.0 -8.39
Durs (clust-depth=0) 24.7 24.1 -8.76

Table 3. Effect of depth of clustering

with one set of phones being en, em, ah and sil and the other being
the other 42 phones.

7. CONCLUSIONS

The experiments reported here are only moderately encouraging
in terms of the effectiveness of duration modeling. The technique
as implemented here will only be acceptable if an increase in sys-
tem complexity is accepted for a quite small improvement in WER.
However it may be useful for system combination because the tran-
scriptions with and without duration modeling are considerably
differnt (about 5%). The small gains obtained from duration mod-
eling were only present when durations were modeled on a word
rather than phone basis. It was also important to take into account
word context, at least to the extent of modeling pre-pausal length-
ening. There was no significant difference in WER between the
techniques reported here and our implementation of the approach
described in [1].
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