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LET-Decoder: A WFST-based Lazy-evaluation
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Abstract—We propose a novel lazy-evaluation token-group
decoding algorithm with on-the-fly composition of weighted
finite-state transducers (WFSTs) for large vocabulary continu-
ous speech recognition. In the standard on-the-fly composition
decoder, a base WFST and one or more incremental WFSTs are
composed during decoding, and then token passing algorithm
is employed to generate the lattice on the composed search
space, resulting in substantial computation overhead. To improve
speed, the proposed algorithm adopts 1) a token-group method,
which groups tokens with the same state in the base WFST
on each frame and limits the capacity of the group and 2) a
lazy-evaluation method, which does not expand a token group
and its source token groups until it processes a word label
during decoding. Experiments show that the proposed decoder
works notably up to 3 times faster than the standard on-the-fly
composition decoder.

Index Terms—Speech recognition, WFST, on-the-fly composi-
tion, on-the-fly lattice rescoring

I. INTRODUCTION

A decoder plays an important role in an automatic speech
recognition (ASR) system where it integrates acoustic and
language information to generate the most likely word se-
quence for an input speech signal. It is necessary for many
applications that the decoded results are in the form of
lattices [1]–[3] or N-best hypotheses lists [4], [5] since they
are more informative than just one best hypothesis. Various
lattice generation methods have been proposed, such as the
word/phone pair assumption [2], [6]–[8], the N-best histories
method [9], [10], and the exact lattice generation method [11]
that is the most widely used compared with others.

Decoders based on weighted finite-state transducers (WF-
STs) [12] can efficiently compose various source information,
including acoustic, phonetic context decision tree, lexicon,
and language model. Thanks to operations such as deter-
minization and minimization in WFST making the decoders
very compact, the WFST-based decoders generally work more
efficiently, in a pithy and elegant manner than other classical
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approaches [13]. However, when individual models of knowl-
edge sources become huge, such as high-order language model
(LM) or million-word lexicon, the composed WFST can be
memory-inefficient or even infeasible to construct.

To overcome this problem, two kinds of solutions have
been proposed. The first one is multiple-pass decoding [8],
[14], [15] which usually breaks up the decoding process into
two stages. Fast, efficient (relatively small) models are used
to generate restrict-sized lattices first. They are then rescored
with richer knowledge sources for better performance. While
the potential of the two-pass method is limited by the relatively
small knowledge sources used in the first pass. The two-pass
procedure makes the latency issue unavoidable. Such method
is thus more suitable for offline tasks. The second method
is on-the-fly (aka. on-demand or lazy) composition [16]–
[18], in which WFSTs are separated into two (or more)
groups and dynamically composed when needed. As such,
it reduces memory usage and is more flexible than offline
composition. However, decoding becomes slower since the
search space is not optimised as well as the offline composition
does. Moreover, on-the-fly composition results in extra com-
putational overhead within decoding. Researchers proposed
several algorithms to optimize on-the-fly composition, such as
look-ahead composition [19], [20] and on-the-fly hypothesis
rescoring under phone pair assumption [21]–[23].

This paper proposes a novel method to optimize the on-the-
fly composition decoding for exact lattice generation [11]. The
proposed innovative WFST-based decoder is denoted as Lazy-
evaluation Token-group decoder (LET-Decoder). This work
makes contributions from three aspects: 1) we propose a token-
group method and apply lazy-evaluation method with it for
speedup; 2) we employ “bucketqueue” to implement histogram
pruning in a more natural way; and 3) we develop an online
version of the LET-decoder. Experiments show that our pro-
posed decoder can achieve up to 3 times relative speedup. This
work is open-sourced under Kaldi [24]1. The approach in [22]
mostly relates to our work. That approach performs the Viterbi
search in the first WFST and rescores the hypotheses on word
level in the second WFST. However, their implementation
includes an approximation during token recombination that
may affect word accuracy, and a declination of time alignment
can occurs. In contrast, our proposed decoder can perform
exact decoding and generate exact lattices.

1https://github.com/LvHang/kaldi/tree/bucket-d



2

II. BASIC DECODER

This section briefly reviews background work closely re-
lated to the developed approach, including the WFST-based
decoder and the BigLM decoder.

A. WFST-based Decoder

The standard decoding graph employed in Kaldi is similar
to that in [12], where the WFST decoding graph is denoted
by

S ≡ HCLG = min(det(H ◦ C ◦ L ◦G)) (1)

where H, C, L, and G represent the Hidden Markov Model
(HMM) structure, phonetic context-dependency, lexicon, and
grammar, respectively, and ◦ denotes the composition opera-
tion of WFSTs. On an arc in HCLG, the input label is the
identifier of a clustered context-dependent HMM state, the
output label corresponds to a word, and the weight typically
represents a negated log-probability.

In general, the token passing algorithm [25] is used to
decode a T -frame utterance by composing the acoustic log-
likelihood graph U with the HCLG graph.

W ≡ U ◦HCLG (2)

The decoding task is effectively to find the best path through
the search graph W of the utterance. In particular, W may
have approximately (T + 1) times more states compared with
HCLG itself when a precise search is performed. To save
memory and decoding time, pruning methods [26], [27] are
adopted in practise.

Notably, a token, which is indexed by HCLG-state at each
frame step, represents the potential decoding information of
an input utterance up to the current frame. The acoustic and
graph costs are kept separately so that re-scaling and rescoring
with higher-order LM subsequently are convenient.

B. BigLM Decoder

The basic idea of the on-the-fly composition decoder, de-
noted as BigLM decoder, is to create the decoding graph
HCLG with a small (e.g. low-order or pruned) LM, and
compose dynamically with a WFST representing the difference
between a relatively large LM and the small one. The resulting
decoding graph Sbig can thus be obtained as follows:

Gr = G− ◦G′ (3)
Sbig = HCLG ◦Gr (4)

where G and G′ are the small and large LMs, respectively.
Here, G− is topologically analogous to G but with negated
weights, and Gr is referred to residual grammar. In practice,
HCLG and Gr are stored separately. Then the process of
decoding is performed as follows:

Wbig = U ◦ Sbig ≡ U ◦HCLG ◦Gr (5)

Compared to the traditional decoder introduced in Sec-
tion II-A where a token is represented by a pair (frame-index,
HCLG-state), here a 3-tuple (frame-index, HCLG-state, Gr-
state) is recorded for each token. At each time, the token
passing executes the following steps:
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Fig. 1. The comparison of (a) tokens in BigLM decoder and (b) tokens in
token-group method. For example, the states with the same color in (a) are
grouped in the box in (b). (s,l) is short for (HCLG-state, Gr-state) pair space.

1) Obtain current HCLG-state of a token, pass it one step
forward in the graph HCLG, record the output label on
that arc, and derive a new HCLG-state’.

2) Obtain current Gr-state of a token, pass it one step
forward in the graph Gr by treating the output label
of HCLG-state as input, and derive a new Gr-state’.

3) Generate a new triple tuple with the HCLG-state’ and
Gr-state’. The frame index is dependent upon the input
label (i.e.ε or not) in the graph HCLG.

The BigLM decoder is memory-efficient so that richer
knowledge sources can be involved in one-pass decoding. But
it is slow due to the computational overhead introduced by
composition during decoding. As described above, the search
space of the BigLM decoder is (HCLG-state, Gr-state). Gr

works only when a token crosses a word boundary. Since
word output arcs are much less frequent than non-word output
arcs, there are a lot of repeated operations for tokens with
the same HCLG-state and different Gr-states (e.g. Fig. 1(a)).
Furthermore, as pruning methods are always applied inside the
HMM structures of words, some tokens cannot reach the next
word boundary, and it brings further wasted operations. To
overcome these drawbacks, we propose LET-Decoder in the
following section.

III. LAZY-EVALUATION TOKEN-GROUP DECODER

In this section, we describe our LET-Decoder, which is
extended from the BigLM decoder under the exact lattice
generation method.

A. Token-group structure and lazy-evaluation method

In general, to eliminate the “repeated operations” mentioned
in II-B and also exemplified in Fig. 1(a), we group the tokens
with same HCLG-state on each frame so that we can use
unified token-group level operations to replace repeated token
level operations, as shown in Fig. 1(b). To avoid the “wasted
operations”, we employ the lazy-evaluation method which will
not fill tokens into token-groups until word output arcs are
reached, as shown in Fig. 2. If the token-groups are early
pruned, we can save the operations of generating tokens. We
give the details of our implementation as follows.
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Fig. 2. The sketch of token-group structure and lazy-evaluation method.

First, we introduce the token-group concept. In general,
we group together the tokens with the same HCLG-state but
different Gr-states on each frame. The characteristics of the
token-group (refer to Token Group in Fig. 2) are:
• Forwarding-prob of the best token.
• A finite length heap used to organize the real tokens,

aiming to avoid unpromising hypotheses.
• Preceding token-group links which speed up back-tracing.
• Succeeding token-group links which record correspond-

ing acoustic and LM information.
• “Expanded” or “not-expanded” status, which identifies

the tokens has been generated or not. “Not-expanded”
token-group only originates from non-word output arcs.

Second, we apply lazy-evaluation on top of the token-group
structure. The core idea is that we do not expand (i.e. fill in
“real” tokens) the token-group until a word label is emitted.
In Fig. 2, we show all kinds of possible expansion cases. In
particular, two kinds of operations are as follows:
• Traverse a non-word output arc and go into a “non-

expanded” token-group: construct group level links only.
• Traverse a word output arc (case (b) in Fig 2) or go into

an “expanded” token-group (case (a)/(b) in Fig 2): trace
back from the destination token-group by following all
the preceding links until an “expanded” token-groups is
encountered in each path, and then expand the tokens into
corresponding token-groups along all the paths.

Notably, during the process of back-tracing, our lazy-
evaluation token-group design guarantees that updating the
token-group which is not on the current frame does not change
its forward-prob. We denote this as α-stable property, and it is
convenient for pruning methods and generating exact lattices.

Comparing to the BigLM decoder, lazy-evaluation token-
group design has the following clear advantages: 1) When
traversing the HCLG graph, we use one unified token-group
operation to replace the duplicated token operations (step1
of II-B). 2) If “non-expanded” token-group is pruned, the
token level operations are saved (step2 of II-B). 3) When
tracing back to produce the tokens, we use the information on
succeeding token-group links directly, so that we can avoid
retrieving the HCLG graph and acoustic model (II-A).

B. BucketQueue for histogram pruning

For general WFST-based decoders, normally emitting and
non-emitting arcs are processed separately. The destination
tokens of non-emitting/emitting arcs only appear on the cur-
rent/next frame so that histogram pruning is convenient. But
we have to iterate over all outgoing arcs of one state in the
decoding graph twice. To avoid this issue, we process these
two types of arcs simultaneously (denoted as “ProcessUnify”)
to reduce the redundant iteration.

As “ProcessUnify” makes the destination tokens also be
produced at the current frame, we need a new method to
do histogram pruning. We employ the “BucketQueue” data
structure, which is a priority queue for prioritizing elements
whose priorities are integers. It is implemented with a priority-
indexed array where elements in the same bucket have the
same priority. In practice, the token-groups/tokens are in-
serted into the queue according to the integer part of their
forward-probs. Compared with the conventional decoders, the
“BucketQueue” method, which exactly controls the number
of processed elements, is a more natural way to implement
“histogram pruning”.

C. Online Lazy-evaluation Token-group Decoder

Online decoding requires generating partial results in real
time. Although an extra backward pointer is stored in token
structure as general decoders, our LET-decoder still needs
to deal with two issues: 1) “ProcessUnify” leads to the
last token-group list half-baked when an utterance is not
finished. 2) Token-groups may stay on “not-expanded” status.
To resolve the first issue, we can collect best token-group on
the penultimate/last token-group list according to the status of
the utterance, e.g. ongoing or finished. For the second issue,
because of the α-stable property, back-tracing from token-
group/token does not lose accuracy.

After figuring out the above issues, we can perform online
decoding and generate partial results in real time. We find
the best token-group on the penultimate/last frame in the first
place, and then trace back along the narrow-band preceding
token-group links to an “expanded” token-group. We then
follow the backward token pointer to recover the remaining
part of the path. The whole back-tracing path can be regarded
as the partial best path.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

1) LibriSpeech corpus: Systematic evaluation of the pro-
posed LET-decoder is conducted using open-source speech
recognition toolkit Kaldi [24]. We experiment with the
LibriSpeech (LIB) corpus [28], which contains approxi-
mately 960 hours training data and four testing datasets
(i.e. {dev/test} {clean/other}), of which each has about two
hours audio data. The “other” test sets are more challenging
compared to the “clean” ones, and prone to cause search errors
for decoding algorithms.

We used a time-delay deep neural network (TDNN)
model [29], [30] trained by lattice-free maximum mutual infor-
mation (LF-MMI) criterion [31]. For the LibriSpeech testing,
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the customary standard LMs are used [28]. The small 3-gram
LM (60MB) is used to build the HCLG decoding graph. The
mild-pruned 3-gram LM (tgmed, 140MB), original 3-gram LM
(tglarge, 760MB) and original 4-gram LM (fglarge) are used
to construct residual grammar Gr respectively.

2) Mandarin-English code-switching corpus: An industry-
level internal Mandarin-English code-switching model is also
used to evaluate the LET-decoder. A “CNN-TDNN” model
is trained by LF-MMI criterion with 20,000 hours Mandarin-
English data. The experiments are conducted on an internal
Mandarin 3.5 hours test set (test-pure) and the offical ASRU
Mandarin-English code-switching challenge testset [32] (test-
switch). The 950k-vocabulary LMs are trained from 48GB
Mandarin-English text. The HCLG decoding graph is built
with a 2-gram LM (1GB). The 2.3GB 3-gram LM (tgmed),
4.4GB 3-gram LM (tglarge) and 5.6GB 3-gram LM (fglarge)
are used to build residual grammar separately.

B. Performance

In Table I, we compare the WERs (MERs [32] for
code-switching testset) among the two-pass lattice rescoring
method, BigLM decoder, and our proposed LET-decoder. It
shows that WERs of the three methods are close, while the
last two methods outperform the first marginally. The better
performance results from the more accurate LM information of
the relatively large LM used in decoding. Compared with the
WER criterion, the average log-likelihood of lattices provides
more accurate information for decoder evaluation. We thus
compare the average log-likelihood between BigLM decoder
and the proposed one. We observe comparable accuracy of
the two decoders under the equivalent pruning condition (i.e.
beam=15, lat-beam=8, etc).

TABLE I
WER STATISTICS: RESCORING / BIGLM DECODER/ LET-DECODER

tgmed tglarge fglarge
dev-clean 4.27/4.25/4.26 3.38/3.38/3.38 3.27/3.28/3.27
dev-other 11/11/11.01 9.14/9.1/9.1 8.7/8.59/8.6
test-clean 4.74/4.77/4.77 3.94/3.93/3.92 3.83/3.82/3.82
test-other 11.2/11.18/11.19 9.21/9.17/9.18 8.72/8.65/8.67
test-pure 3.82/3.82/3.82 3.68/3.66/3.67 3.63/3.61/3.63

test-switch 3.33/3.08/3.24 3.32/3.07/3.17 3.33/3.07/3.14

C. Speedup

We compare the real time factor (RTF) between BigLM
decoder and LET-decoder with the same pruning for both. We
observe about 1-fold to 3-fold speedups with a single process
as shown in Table II.

TABLE II
RTF: BIGLM DECODER/LET-DECODER

tgmed tglarge fglarge
dev-clean 0.1365 / 0.0599 0.1435 / 0.0649 0.2341 / 0.0709
dev-other 0.2698 / 0.1496 0.2799 / 0.1631 0.3127 / 0.1647
test-clean 0.1314 / 0.0606 0.1401 / 0.0728 0.1548 / 0.0741
test-other 0.2679 / 0.1625 0.2838 / 0.1756 0.3151 / 0.2158
test-pure 0.7151 / 0.2952 0.7561 / 0.3147 0.7442 / 0.3149
test-switch 0.5803 / 0.2728 0.5716 / 0.2770 0.6463 / 0.3039

We further analyze the proposed LET-decoder to show the
reasons of speedup. Experiments are reported on the LIB
dataset. The same trend is observed from the code-switching
corpus.

1) Token-group structure without lazy-evaluation
method: To investigate how much the token-group structure
and lazy-evaluation method contribute to the speedup indi-
vidually. So we test our token-group structure without lazy-
evaluation (i.e. always expand token-groups at once) method.
There is not significant speedup over the BigLM decoder.
We believe the extra overhead of maintaining the token-group
structure undermines the speed improvement by eliminating
the repeated operations via using the token-group structure. So
the speedup mainly comes from the lazy-evaluation method.

2) The effect of token-group size: Figure 3(a) shows
the effect of token-group size in the proposed LET-decoder.
Generally, larger speedups are achieved with smaller token-
group size, but differences are not apparent. We further explore
the saturation of each token-group. Fig. 3(b) shows that each
group contains about two tokens on average, which leads to the
unapparent gap. But there are still some token-groups contain
dozens of real tokens and most of them are located in the
narrow band around the best path.
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Fig. 3. (a) the relationship between RTF and token-group size. (b) an example
to show the number of real tokens in token-group.

3) The reduction of on-the-fly composition operations:
The number of on-the-fly composition operations presents
the number of times we advance Gr states. Table III shows
the number of these operations on the BigLM decoder and
LET-decoder. Compared with the BigLM decoder, only about
1/10 operations are executed for the proposed LET-decoder,
accelerating the decoding drastically as a result.

TABLE III
ON-THE-FLY COMPOSITION OPERATIONS (MILLION): BIGLM

DECODER/LET-DECODER

tgmed tglarge fglarge
dev-clean 3805 / 196 3462 / 185 3501 / 201
dev-other 7459 / 563 6955 / 556 7108 / 558
test-clean 3986 / 211 3634 / 202 3687 / 220
test-other 7945 / 596 7389 / 583 7550 / 644

V. CONCLUSIONS

In this paper, we introduce a Lazy-evaluation Token-group
decoder to speedup the on-the-fly composition method with
exact lattice generation. The proposed decoder achieves 1-to-
3 fold speedup so that high-order language models can be
efficiently used in the one-pass decoding.
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