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ABSTRACT

In this paper, we investigate out-of-vocabulary (OOV) word
recovery in hybrid automatic speech recognition (ASR) sys-
tems, with emphasis on dynamic vocabulary expansion for
both Weight Finite State Transducer (WFST)-based decod-
ing and word-level RNNLM rescoring. We first describe our
OOV candidate generation method based on a hybrid lexical
model (HLM) with phoneme-sequence constraints. Next, we
introduce a framework for efficient second pass OOV recov-
ery with a dynamically expanded vocabulary, showing that,
by calibrating OOV candidates’ language model (LM) scores,
it significantly improves OOV recovery and overall decod-
ing performance compared to HLM-based first pass decoding.
Finally we propose an open-vocabulary word-level recurrent
neural network language model (RNNLM) re-scoring frame-
work, making it possible to re-score ASR hypotheses contain-
ing recovered OOVs, using a single word-level RNNLM ig-
norant of OOVs when it was trained. By evaluating OOV re-
covery and overall decoding performance on Spanish/English
ASR ‘tasks, we show the proposed OOV recovery pipeline
has the potential of an efficient open-vocab word-based ASR
decoding framework, with minimal extra computation ver-
sus a standard WFST based decoding and RNNLM rescoring
pipeline.

Index Terms— OOV recovery, RNNLM rescoring, dy-
namic vocabulary

1. INTRODUCTION

As a human language evolves, there are always new words
occurring. Therefore it’s not possible to cover all words in a
language with a closed vocabulary. In a conventional hybrid
ASR system, a pronunciation lexicon with a fixed vocabu-
lary is usually used. In test phase, OOV words in test utter-
ances can’t be recognized correctly. And the recognizer will
output acoustically similar in-vocabulary (IV) words as sub-
stitutions, and the recognition of surrounding in-vocabulary
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words may also be affected. This is harmful to readabil-
ity of the ASR hypotheses, especially when the OOVs are
named entities like human/place names, which could be im-
portant keywords given a certain context. Recent research
on end-to-end (E2E) ASR with graphemes or word-pieces
as modeling units has shown that it’s possible to get rid of
an expert-curated pronunciation lexicon [1], enabling open-
vocabulary ASR. However its relative advantage over conven-
tional lexicon-based ASR highly depends on the language and
amount of data: for irregularly spelled languages like English,
grapheme/word-piece-based ASR may only work well given
a large amount of training data, e.g. thousands of hours. For
academic English datasets with less than 1000 hours training
data like Switchboard, Librispeech and Wall Street Journal
(WSJ), it has been consistently observed that using a lexicon
gives better performance[2, 3, 4]. Therefore, addressing the
OOV detection/recovery problem for conventional lexicon-
based ASR is still an important task, which we want to ad-
dress here.

2. RELATED WORK

In order to recover OOVs, we need to first detect OOVs. The
first type of approaches model OOVs implicitly with sub-
word units, and detect OOVs either by finding inconsistency
between sub-word (e.g. phone) and word recognition results
via two pass decoding [5, 6, 7], or building a hybrid LM com-
bining word and sub-word units (e.g. word-pieces) [8, 9, 10,
11, 12, 13]. Labeled data are usually required for building the
OOV classifier. The second type of approaches model OOVs
explicitly by a generic word model with a specific structure,
e.g. a phonemic language model, to “absorb” OOVs during
decoding [14, 15, 16, 17, 18]. The generic word model is
tagged by an OOV symbol, e.g. <unk> in the lexicon and
language model (LM), and is usually combined with the pro-
nunciation lexicon, as a hybrid lexical model (HLM). This ap-
proach models OOVs explicitly and make it straightforward
to conduct OOV recovery as a downstream task. So we’ll fol-
low it for OOV detection and candidate generation.

Given OOV candidates as strings of sub-words (e.g.
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phonemes) from hybrid decoding with HLM, the next step is
OOV recovery. Besides the basic approach using a phoneme-
to-grapheme (P2G) model [18, 16] to recover OOVs’ spellings,
research efforts along two streams have been made to improve
recovery performance. In the first stream, it’s shown in [13,
19, 16] that clustering OOV candidates with linguistic/acoustic-
based metrics helps OOV recovery, by more robustly dealing
with different instances of an OOV word. However there’s
a basic assumption that there are many frequently recur-
ring OOVs so that it’s applicable to cluster OOV candidates.
In our work we mostly focus on recovering infrequent/rare
OOVs, and thereby we didn’t pursue this direction. Instead
we follow the second stream, improving OOV recovery by
better estimating LM scores of OOV candidates in test phase.
On one hand, [20, 21] investigated estimation of LM scores
for OOVs given their ground-truth spelling from extra corpus,
where relevant statistics can be collected. Our research will
focus on OOV LM probability estimation without relying
on oracle spellings. On the other hand, recently [22] pro-
posed a hierarchy approach to first score hypotheses with a
character RNNLM, and then use word/character RNNLMs to
re-score in-vocabulary (IV)/OOV words separately. ! Instead
of combining two word/character RNNLMs, which is com-
putationally expensive, we aim at extending the vocabulary
of a single word RNNLM at test phase to enable re-scoring
hypotheses containing OOVs.

3. OOV CANDIDATE GENERATION USING HYBRID
LEXICAL MODEL (HLM)

A WEFST-based decoder, e.g. the one used in Kaldi [23], per-
forms decoding on a search space constrained by a composed
graph H o C o L o G, where H maps acoustic modeling
units to context-dependent phones; C represents the context-
dependency; L presents the pronunciation lexicon, mapping
phones to words. Following [14, 16, 15], we use the hybrid
lexical model (HLM) to model OOVs in the lexicon. The first
step is to train a phonemic language model on all pronunci-
ation entries from the lexicon. Then, we compile this PLM
into a finite state acceptor (FSA), denoted as GG,,. However,
G, two undesirable properties. 1. It can generate phoneme
sequences with any length, and thereby allows OOV candi-
dates with a single phone pronunciation to occur in decoding
lattices, which is not optimal. 2. It’s trained on phonemes
without word-position-dependency to keep it compact, while
we need word-position-dependency to represent OOV pro-
nunciations to be consistent with other lexicon entries. We
solve these two problems by composing the G, with a sepa-
rate “phoneme-sequence-constraint” FST, denoted as C’p, en-
coding the allowed minimum length (e.g. 2) of generated se-
quences; and adding word-position-dependency. See Figure
1 for an example.

! Although using a character LM alone solves the OOV problem, it’s gen-
erally believed that character LM under-performs relative to word LMs for
languages with a small character vocabulary like English [22].

Fig. 1. An example “phoneme-sequence-constraint” FST
accepting only phoneme sequences whose length > 2, and
adding word-position-independent markers (“B”, “E”, “I”
means at the beginning/end of or inside a word) to phonemes

After creating G, o C),, we build the lexicon L as usual,
and replace the OOV symbol, e.g. <unk>’s pronunciation
with G}, o C, using OpenFST’s fstreplace operation.
This gives the hybrid lexical model (HLM), and we’ll have
a hybrid decoding graph: H o C o (L U (G, 0 C})) o G.
The weight of the OOV model in the graph is controlled by
the unigram probability of <unk> in G. After generating
lattices in a standard WFST decoding pipeline, and aligning
all arcs with word boundaries, OOV instances will occur as
arcs labeled by <unk> with a pronunciation given by the
HLM?. A P2G model can then be applied to recover OOV
candidates’ spelling.

4. EFFICIENT 2ND PASS DECODING WITH A
DYNAMIC VOCABULARY

Having obtained OOV candidates by hybrid decoding with
HLM, we now focus on improving OOV recovery perfor-
mance by 2nd pass decoding. Our motivation is to re-generate
lattices better accounting for OOVs by calibrating OOV can-
didates’ LM scores utilizing their pronunciation, spelling, em-
pirical frequency, and the overall empirical OOV rate, etc.,
which were unavailable during 1st pass decoding. The first
challenge is how to build the OOV grammar G,,,. First, we
need to assign a proper unigram probability mass? to the OOV
grammar. Here we assign it by the empirical OOV rate, i.e.
#: ;“Zﬁ f““czc;j; rom Lattices poosted by a tunable scalar work-
ing as a “prior” of Ge,). By this mechanism, we achieve our
goal of calibrating OOVs’ weight according to 1st pass decod-
ing results. Then the left problem is to estimate the distribu-
tion of OOV candidates. Here we’ll empirically explore fol-
lowing estimators: Phonemic LM (PLM) scores: This is the
most convenient option since we can reuse the PLM used to
build HLM in 1Ist pass decoding; Character LM scores: This
option is more informative than PLM scores for languages
which are irregularly spelled/has a large grapheme set, and
we can usually train a strong neural character LM; Empiri-
cal frequency, which is number of arcs of a particular OOV

2We determinize lattices at both word+phone level and word level, by
which we keep 1-best path of each local phone lattice representing an <unk>
instance. Note that one OOV could have multiple <unk> instances.

3Here we only estimate OOV candidates’ unigram prob., since we focus
on infrequent OOV so that it’s hard to robustly estimate contextual statistics.
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candidate found in lattices, divided by the total number of
arcs; Uniform distribution, meaning we just assign a con-
stant probability to all OOV candidates. This is potentially a
bad option, which will be investigated as a baseline. Given
G oov, the challenge left is how to efficiently do 2nd pass de-
coding. The trivial approach is to insert it into the regular
LM G, expand the lexicon L accordingly, and rebuild the de-
coding graph, which is very expensive. Another solution is to
utilize a dynamic decoder which compiles the decoding graph
on-the-fly with context dependency and look-ahead [24, 25],
which loses the speed advantage of a static decoder. The
method we adopt is Kaldi’s Grammar-decoding framework
designed for situations where we need to dynamically expand
a vocabulary efficiently at run-time. It utilizes a pre-compiled
generic static decoding graph as usual. During 2nd pass de-
coding, we build a small decoding graph H o C' o L0y, © Goon
where L, is the lexicon of recovered OOVs built with P2G.
Then during decoding, we stitch it together with the generic
decoding graph dynamically. The framework is specific to
models with left-biphone phonetic context. This makes it fea-
sible to enumerate the entry points of each sub-graph (one per
left-context phone). This solution keeps the speed advantage
of a static decoder, while avoiding re-building the whole de-
coding graph at run-time.

S. OPEN-VOCABULARY RNNLM RE-SCORING

Normally, a word-level RNNLM couldn’t inference on hy-
potheses containing OOVs. To tackle this challenge, we uti-
lize two design features of Kaldi-RNNLM][26] enabling dy-
namic vocabulary expansion at test phase: (1). Subword em-
bedding. The word embedding Wi «as (IN: vocab size; M:
embedding dimension) is factorized as the product of a sparse
feature matrix Fy«x (K is the number of features, includ-
ing sub-word features like Bag-of-Words (BoW) of charac-
ter n-grams) and a dense subword embedding matrix Y « s
trained jointly with the neural LM. (2). Input/Output em-
bedding tying, i.e. Wy s is shared by both input/output
layers of the RNN [27]. Specifically, assuming L recovered
OOVs encountered at test phase, we first extract their subword
features and augment the original Fiy i to get F(/ NAL)x K"
Then we multiple it with the original subword embedding
Yi «ar to get the augmented word embedding W(, N+L)xM

and use it to replace Wy as at both input/output layers .
Then this RNNLM can inference on sentences containing re-
covered OOVs. In order to enable lattice rescoring, we also
need to combine (by fstreplace) the n-gram LMs G and
Goop Which were used in 2nd pass Grammar-decoding, into a
single FST, for subtracting old LM scores from lattices. Then
we can re-score lattices/n-best lists as usual.

#Kaldi-RNNLM optionally adds a normalization step at output during in-
ference, so that probabilities sum up to one after vocabulary expansion.

6. EXPERIMENTS

For the performance metric for OOV recovery, we first align
each reference OOV token with its max-overlapped hypoth-
esis token, and then compute word error rate WER (defined
as 1-recovery rate) and character error rate (CER) of all OOV
tokens. Besides, we’ll measure overall WER/CER on utter-
ance level since we also aim at improving overall decoding
performance.

6.1. Spanish experiments on Heroico

We first evaluate the proposed OOV recovery pipeline on a
Spanish ASR task Heroico (LDC2006S37), since Spanish is a
regularly spelled language, creating a easier evaluation condi-
tion ruling out potential errors from P2G. Its training set con-
tains 11hrs read & free-response answer speech. Two test sets
contain the same texts read by native/non-native speakers, all
non-seen in training, with duration of 1h/1.2h respectively. To
simulate OOVs, we randomly removed 45K infrequent words
(count < 10) from the 91K vocabulary. The OOV rate w.r.t.
the limited lexicon on both test sets is 20.6%. We then use the
limited lexicon to train a G2P model and a bi-gram PLM used
for OOV recovery. Then we proceed with the proposed 1st
pass decoding with HLM, 2nd pass grammar decoding and
then open-vocab RNNLM re-scoring. Besides, a baseline is
obtained by decoding with the same limited vocabulary, 1st
pass decoding with n-gram LM and then regular RNNLM
rescoring, without OOV recovery; and oracle results are ob-
tained by the same decoding procedure as the baseline, but
using the original lexicon/LM containing all simulated OOVs.
For all experiments, the same neural acoustic model (TDNN-
F [28]) is used.

First, we present an overview of OOV recovery and over-
all decoding performance in Table 1. On all metrics, 2nd
pass decoding improves over 1st pass decoding consistently,
more significantly on OOV WER/CER. Open-vocab RNNLM
rescoring also consistently helps on all metrics, and the rela-
tive gain it brings is always larger on top of 2nd pass decoding
lattices than 1st pass, confirming 2nd pass decoding provides
lattices of higher quality by calibrating OOV candidates’ LM
scores. Overall, the best system “2nd pass + RNNLM” fills
20%-50% of the gap between the baseline and oracle results
on overall WER/CER, 30%-50% on OOV WER, and 80% on
OOV CER. The larger gain on OOV CER than OOV WER
means recognizing OOVs exactly is much harder than recog-
nizing them approximately. Also the gain for each metric is
smaller on “Nonnative” set, since the speech by Nonnative
speakers are accented so that the quality of OOV candidates
from phonemic decoding is worse.

Next, we investigate different OOV unigram probabil-
ity estimators in 2nd pass decoding, with results on OOV
CER (the most informative metric for OOV recovery) pre-
sented in Table 2. As mention before, we investigate uniform
distribution (“Unif.”), empirical frequency (*“ f ””), and phone-
mic/character LM scores. For the phonemic LM (PLM), we
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Test set| LM Overall WER Overall CER OOV WER OOV CER
Baseline pass 1 pass2  Oracle| Baseline pass 1 pass2  Oracle| Baseline pass 1 pass2  Oracle| Baseline pass 1 pass2  Oracle
Native | n-gram | 29.7 276 241 59 103 7.6 6.6 1.9 100 90.5 683 7.3 1248 369 264 24

RNNLM| 29.1 245 19.7 495|100 6.9 55 1.6 | 100 782 556 6.1 1252 313 212 2.1

Non-
Native

n-gram | 34.6 337 31.7 11.6| 145 131 119 497|100 955 83.0 144
RNNLM| 337 321 285 10.1| 139 119 104 431|100 908 704 129

124.0 43.1 365 6.7
124.6 399 293 63

Table 1. Performance overview of 2nd pass decoding & open-vocab RNNLM rescoring on the Heroico Spanish ASR task

directly take the n-gram PLM used to build HLM. For the
character LM, we train a character RNNLM (“CharRnnlm”)
on all in-vocab words. We can see that uniform distribution
and empirical frequency perform very bad, mainly because
they are not able to assign low scores to long and incorrect
OOV candidates, resulting in lots of insertion errors. Besides,
“CharRnnlm” outperforms “PLM” a bit, mainly because of
the power of neural language modeling, since a Spanish
word’s pronunciation/spelling contain almost the same infor-
mation. Furthermore, we tried composing CharRnnlm scores
with f 5. and found it helps a bit, which was chosen as the
best estimator for this task. Note that the decisions of using
phonemic/character scores and composition with f should be
empirically decided for each language/task, e.g. we found
composition with f only helps when the OOV rate is high.

Test set Unif. f PLM CharRnnlm| CharRnnlm w/ f
Native 100.8 | 96.0 34.1 | 264 243
Nonnative | 1154 | 1183 | 42.5 | 36.5 343

Table 2. OOV CER (2nd pass decoding + RNNLM rescoring)
with different OOV LM probability estimators

6.2. English experiments on Librispeech

Now we switch to the more challenging but practical condi-
tion: Librispeech English ASR task. Here the language is
irregularly spelled, and we use the official 200K vocab so that
OOV rates on fest-clean/other are very low (0.4%-0.5%), and
the OOVs are harder to recognize, since they’re mostly for-
eign words/name entities. Results are presented in Table 3.
All results are after RNNLM rescoring, and the “OOV recov-
ery” row stands for the best 2nd pass decoding + open-vocab
RNNLM rescoring system. Here we add two extra evaluation
conditions. In practice, during test time, we sometimes know
the spelling (e.g. from extra texts) of OOVs in test speech. We
simulate this condition by adding all oracle OOVs from each
test set into the lexicon with (up to top-3) G2P generated pro-
nunciations before decoding, hence the “+Oracle Spelling”
condition®. Given oracle OOV spellings, we want to show the
proposed pipeline could still improve performance, by learn-
ing OOV pronunciations from acoustic evidence, hence the
“+Acoustic Evidence” condition. Basically, we collect all

SWe tried interpolation with tuned weights and element-wise production
+ re-normalization. The later works better, giving a sharper distribution.

%Note that the LM scores of oracle OOVs are still estimated the same way
as the OOV recovery pipeline, since they are not in the original LM.

OOV pronunciations from 1st pass hybrid decoding. For each
pronunciation, we apply P2G and take top-N (which is large,
like 100) spellings, choose pronunciations with at least one
possible spelling matching an oracle OOV, and add them to
the lexicon as extra pronunciations learned from acoustic ev-
idence for those oracle OOVs.

Looking at first two rows in Table 3, as expected, the
gain by OOV recovery is much smaller than in the previous
Spanish task, on all metrics. Looking at the last two rows, it
shows we can achieve consistent gains on all metrics, more
notably on OOV WER/CERs, by utilizing OOVs’ pronun-
ciations learned from acoustic evidence. We picked several
oracle OOVs only correctly recognized at the “+Acoustic ev-
idence” condition, and found the pronunciations from acous-
tic evidence are indeed better than from G2P (mostly differ in
vowels only), e.g. STUTELEY: S T UWl T L IYO (G2P)
vs. S T AH1 T L IYO (acoustic evidence). Besides, the
gain is always larger on fest-clean than test-other, again con-
firming performance of the proposed pipeline highly relies on
the audio quality.

Overall WER OOV WER OOV CER
Test set clean other | clean other | clean other
Baseline 2.84  7.38 100 100 46.01 53.11
OOV recovery 2.75 7.41 94.55 98.58| 37.44 50.13
+Oracle Spelling 2.56 7.18 5091 68.44| 24.08 39.12
+Acoustic Evidence 2.49 7.14 42.27 64.18| 19.52 37.23

Table 3. Performance of the proposed pipeline on Libripseech

7. CONCLUSION

In this paper we have proposed an OOV recovery pipeline
tightly integrated to a standard WFST decoding and RNNLM
re-scoring framework, with both OOV recovery and overall
decoding performance improved on Spanish/English ASR
tasks, by enabling OOV LM score estimation, efficient 2nd
pass decoding with a dynamic vocabulary, and open-vocab
word RNNLM re-scoring. Minimal extra computational
overhead has made it a practical framework for word-based
open-vocabulary ASR decoding. Besides, we showed that
even given oracle OOV spellings, the proposed framework
can bring further gain by learning OOV pronunciations from
acoustic evidence.
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