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Abstract

We describe initial work on an extension of the Kaldi toolkit
that supports weighted finite-state transducer (WFST) decoding
on Graphics Processing Units (GPUs). We implement token
recombination as an atomic GPU operation in order to fully
parallelize the Viterbi beam search, and propose a dynamic load
balancing strategy for more efficient token passing scheduling
among GPU threads. We also redesign the exact lattice
generation and lattice pruning algorithms for better utilization
of the GPUs. Experiments on the Switchboard corpus show
that the proposed method achieves identical 1-best results and
lattice quality in recognition and confidence measure tasks,
while running 3 to 15 times faster than the single process Kaldi
decoder. The above results are reported on different GPU
architectures. Additionally we obtain a 46-fold speedup with
sequence parallelism and multi-process service (MPS) in GPU.
Index Terms: ASR, Decoder, Parallel Computing, WFST,
GPU, Lattice Processing, Confidence Measure

1. Introduction

Recent advances in deep learning based automatic speech
recognition (ASR) invoke growing demands in large scale
speech transcription and analysis. The main computation
of a common speech transcription system includes: acoustic
model (AM) inference and weighted finite-state transducer
(WFST) decoding. To reduce computation of the AM
inference, researchers have proposed a variety of efficient
forms of AMs, including novel structures [1} 2], quantization
[3L 4], frame-skipping [Sl 16] and end-to-end systems [7, I8].
Meanwhile, algorithmic improvement, e.g. pruning [9,|10] and
lookahead [[11}12] is the common way to speed up decoding.
GPU-based parallel computing is another potential direc-
tion which utilizes a large number of units to parallelize the
computation. As most of the computation takes the form of
matrix operation, the AM inference can be sped up by sequence
batching [13] similar to that during training [14)]. Nevertheless,
GPU-based decoding is less prevalent, despite its success in
small language model (LM) [15]]. Two reasons hamper its wide
application: 1) it is hard to utilize large LMs since GPUs have
smaller memory. ii) the solution is not general, e.g. with
specific AM or LM requirements, and lack of lattice generation.
This work is an extension to Kaldi [16], applying GPU
parallel computing in WFST decoding. It is a general-purpose
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offline decoder[ﬂ which does not impose special requirements
on the form of AM or LM, and works for all GPU architectures.
To utilize large LMs in the 2nd pass and support rich post-
processing, our design is to decode the WFSTs and generate
exact lattices [17]. The work is open-sourced El and will be
compatible with all released Kaldi recipes.

The rest of the paper is organized as follows. Prior work is
compared in Section 2] Our main contributions are described
in Sections [3} i) implement token recombination as an atomic
GPU operation with no precision loss. ii) propose a load
balancing strategy for token passing scheduling among GPU
threads. iii) redesign parallel versions of exact lattice generation
and pruning. Experiments are conducted on the Switchboard
corpus in Section[d] followed by conclusion in Section 5]

2. Comparisons with Prior Work

[18]] introduced a parallel Viterbi algorithm in CPU, which
concentrates on partitioning the WFSTs to trade off between
load balancing and synchronization overhead. To cope with
similar issues in the context of GPU architectures, We give
general LM-independent solutions in Section [3.3] [I5] [19]
first utilized GPUs in ASR decoding and showed significant
speedup. However, the limited GPU memory becomes a
bottleneck for large vocabulary tasks. A series of works were
proposed in [20} 21} 23] and attempted to cope with large LM
issue by an on-the-fly rescoring [10]] algorithm. Advantages of
our method include: i) general solution and better performance,
by generating an exact lattice in the first pass decoding followed
by a second pass rescoring, which always obtains slightly better
results [22]. The resultant lattice also benefits other speech
processing tasks, e.g. confidence measure. ii) faster decoding
speed. This work benefits from less synchronization overheads,
better load balancing, and sequence parallelism. Moreover, it
also requires less data transfer compared with [23]]. Finally,
to the best of our understanding, [24] is the only open-source
project in this field, but it only implemented the basic Viterbi
decoding without combining AM posteriors and beam [9],
which cannot be applied to ASR.

3. Parallel Viterbi Beam Search

The proposed system works in a 2-pass decoding frame-
work [25] to tackle the language model size problem and enable
rich post-processing based on exact lattices.

IRecent advances in CPU decoding make it easier to build a real-
time decoder [2||6] for online streaming applications. Thus our goal is
to transcribe tons of offline audios.

2https://github.com/chenzhehuai/kaldi/tree/
gpu—decoder
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Figure 1: Framework of Parallel Viterbi Beam Search with Exact Lattice Processing

3.1. System Outline

Figure |I| shows our framework, with two GPU concurrent
streams performing decoding and lattice-pruning in parallel
launched by CPU asynchronous calls. Namely, at frame
(t + 1), stream 2 prunes the lattice generated by stream 1
at frame (¢). The procedure of decoding is similar to the
CPU version but works in parallel with specific designs
discussed in the following sections. Load balancing controls
the thread parallelism over both WFST states and arcs.

3.2. GPU-based Token Recombination

The synchronization overhead in Viterbi search comes from
the token recombination. In ASR decoding, Viterbi search is
reformulated to token passing algorithm [23], where a token
represents a partial match up to frame ¢ and each WEST state
at frame ¢ holds a single moveable token. At each frame, the
Viterbi path is obtained by a roken recombination procedure,
where a min operation is performed on each state over all of
its incoming arcs (e.g. state 7 in Figure [2] and the incoming
arcs from state 2, 5 and 7), to compute the best cost and the
corresponding predecessor of that state.

Algorithm 1 Thread-level Token Recombination (Inputs: accu-
mulated cost, an out-going WFST arc and a current token)

1: procedure RECOMBINE(cost, arc, curTok)

2: oldTokPack = state2tokPack[arc.next_state]

3: curTokPack = packFunc(cost,arc.id) > pack into uint64
4: ret = atomicMin EkoldTokPack,curTokPack)

5: if ret > curTokPack then > recombine
6 perArcTokBuflarc.id] = *curTok > store token

The original CPU algorithm conducts recombination in
serial.  We discuss how to implement GPU-based token
recombination in this section and leave how to parallelize it
to the next section. A naive implementation is by adding
critical sections to recombine tokens in serial. Such design
is inefficient and causes unexpected deadlocks on pre-Volta
GPUs. performs a per-state reduction on the token passing

3atomicMin(*address, val) [26]. Computes min(*address, val),
writes the result to address, and returns the original *address .

results, which requires extra burden of bookkeeping memory to
eliminate write conflicts. encodes all token data in 32 bits
and does the recombination by atomic operations. This method
loses precision and makes the decoder dependent on models.

We propose Algorithm [I] which is a general method
for GPU token recombination with no precision loss. The
algorithm is performed per GPU thread, and runs in parallel
for every arc, e.g. the arc from state 2 to state 7 in Figure |Z|
is processed by a thread following this algorithm (details
on parallelism are in the following section). We pack the
cost and the arc index into an uint64 to represent the token
before recombination, with the former one in the higher bits
for comparison purpose. In each frame, we save the token
information in an array whose size is the number of arcs. This
ensures there are no write conflicts between threads since each
arc can be accessed at most once in each frame. After passing
all tokens, we aggregate survived packed tokens, unpack them
to get arc indexes, and store token information from the former
array to token data structures exploiting thread parallelism.
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Figure 2: Example of Dynamic Load Balancing. The dashed
box denotes a CUDA cooperative group and different groups
are with different colors. Each group is controlled by Thread 0
of it. After processing all the forward links of a state, Thread
0 accesses the dispatcher and the next token is dynamically
decided by atomic operation. Group 0 and 1 work in parallel.



3.3. Parallel Token Passing

Another issue in parallel algorithm is load balancing. For
each state, we traverse their out-going arcs in parallel, till we
reach a final state. Because WEST states might have different
numbers of out-going arcs, the allocation of states and arcs
to threads can result in load imbalance. Unlike in [15} [18]]
where the authors redesigned the WFST structure, this work
does not require any structural change on AM, lexicon or LM.
We propose static load balancing, which starts off by assigning
roughly equal number of arcs to each thread, before processing
the corresponding arcs. This design requires the accumulated
sum of the arc numbers of active tokens|’} which requires extra
computation and kernel launch time.

Motivated by [28]], we also introduce dynamic load
balancing in Algorithm [2] We use a dispatcher in charge of
global scheduling, and make N threads as a group (N = 32)
to process all arcs from a single token. When the token is
processed, the group requests from the dispatcher a new token.
We implement task dispatching as an atomic operation. Figure[]
shows an example. We compare static and dynamic load
balancing in Section[4.2]

Algorithm 2 Grid-level Token Passing (N=32; Inputs: the
current active token vector)

1: procedure DYNAMIC LOAD BALANCING (toks)

2: group = cooperative_groups::tiled_partition(32)

if group.thread_rank()==0 then > rank 0 in each group
i = atomicAdd(global_d,1) > allocate new tokens

i = group.shfi(i,0) > rank O broadcasts i to whole group

if i>=sizeof(toks) then return > all tokens processed

for arc in tok2arcs(toks[i]) do > thread parallelism
call Recombine(toks[i].cost+arc.cost, arc, toks[i])

A A

3.4. Exact Lattice Generation

An exact lattice [17] is one that stores precise costs and
state level alignments, which is crucial to LM rescoring
performance, and enables rich post—processingﬂ Implementing
the lattice processing in GPU is non-trivial. [23] simply decodes
in GPU and generates lattice in CPU, which significantly
slows down the decoder and results in overheads of device-
to-host (D2H) memory copy. We thoroughly solve this
problem by redesigning parallel versions of lattice processing
algorithms [[17] in the following.

In lattice generation, for each token passing operation, a
lattice arc needs to be stored in GPU memory. We design a
GPU vector to store arcs using push_back function implemented
by an atomic operation, where the memory is pre-allocated.

// implementation of v.push_back (val)
int idx = atomicAdd(cnt_d, 1); // idx=cnt_d++
mem_d[idx] = xval; // store data

To reduce the overhead of atomic operations, we pre-
allocate K vectors and randomly select one to push_back the
lattice arc into. After token passing, arcs from K vectors are
aggregated. We process lattice nodes in a similar mannerﬂ

4A GPU DeviceScan operation over around 10K integers.

5Beside the confidence measure [29] examined in this paper, it also
benefits tasks including minimum Bayes-risk decoding [30], system
combination [31]], discriminative training [32], etc. .

%In our preliminary experiments, this optimization speeds up lattice
arcs by 10 times with K = 32. The speedup of lattice nodes is small.

3.5. Lattice Pruning

The parallel lattice pruning is based on the algorithm described
in 33| [17] with necessary modifications for GPU paralleliza-
tion. The original CPU version of lattice pruning iteratively
updates extra costs of nodes and arcs until they stop changing,
where extra cost is defined as the difference between the best
cost including the current arc and the best overall path. Arcs
with high extra costs are then removed, along with nodes that
are not associated with any remaining arcs. In GPUs, we i)
parallelize the iterative updating of nodes and arcs over GPU
threads; ii) use a global arc vector to replace the linked lists in
the old implementation, for its lack of random access features to
enable parallel access; iii) implement the extra cost updating as
an atomic operation to eliminate write conflicts among threads.
When a lattice arc is pruned, we do not physically remove
the arc, as memory allocation is expensive. Instead, we do
a final merging step to aggregate all remaining arcs using
thread parallelism and the GPU vector proposed in Section[3.4]
Memory consumption of this implementation is discussed in
Section[d.3] Meanwhile, we do not prune lattice nodes because:
i) we need a static mapping for each arc to trace the previous
and the next nodes before and after D2H memory copy. We
use frame index ¢ and vector index ¢ to trace a node, thus node
positions in the vector cannot be changed. ii) the lattice is
constructed in CPU by iterating remaining arcs, thus nodes are
implicitly pruned. iii) node D2H copy is done in each frame
asynchronously, which does not introduce overheads.

4. Experiments
4.1. Setup

In Switchboard 300 hours corpus, we have two acoustic model
baseline setups: one is a “TDNN-LSTM-C” model described in
[2] with lattice-free MMI (LF-MMI) objective [34] with sub-
sampled frame rate. To eliminate the effect of sub-sampling,
the other is a stacked bidirectional LSTM network [35]] with
cross entropy (CE) objective with the original frame rate.

Evaluation is carried out on the NIST 2000 CTS test set. A
30k-vocabulary tri-gram LM trained from the transcription of
Switchboard corpus and a Fisher interpolated 4-gram LM are
used for decoding and lattice rescoring respectively. Kaldi 1-
best decoder and lattice decoder are taken as CPU baselines[]

1-best results and lattice quality are both examined.
For fair comparisons, lattice densities (lat.den., measured
by arcs/frame) [25] are kept identical for CPU and GPU
decoding results. We report word error rate (WER), lattice
rescored WER (+rescored), lattice oracle WER (OWER) [36]]
in recognition tasks. Normalized cross entropy (NCE) [37]
is reported to show the quality of word level confidence
measure after lattice rescoring. A decision tree is trained from
the posterior histogram to map the posterior probabilities to
confidence scores [38]. Real-time factor (RTF) is taken to
evaluate the decoding speed and the speedup factor (A) versus
corresponding CPU baselines. Because of the focus of this
work, we report RTFs excluding AM inference in the tables.
Overall RTFs are given when analyzing the tables. As the
current goal is to build a fast speech transcription system,
latencies of online streaming applications have not been taken
into account. All experiments are conducted on E5-2686 v4
@ 2.30GHz with 1 socket (8 threads). A Tesla V100 is used
in default and different architectures from Kepler to Volta are
examined in Section[4.3]

7T decode-faster-mapped and latgen-faster-mapped in Kaldi toolkit.



4.2. Performance and Speedup

Table [T] compares the proposed GPU lattice decoder with the
CPU baseline under the same beam. All indicators are very
close if not identical. The slight differences might be caused by
different orders in which states are visited during decoding.

Table 1: I-best and Lattice Performance (beam=14).
system lat. den. || WER  +rescored OWER ‘ NCE

CPU 30.3 15.5 14.3 11.2 0.322
GPU 30.2 15.5 14.3 ll.2|ﬂ 0.328

Decoding RTF speedups of both 1-best and lattice decoders
are shown in Table 2} We obtain a 15-fold and 9.7-fold single-
sequence speedups for 1-best and lattice decoders respectively.
Most of the speedups come from parallel traversals of WFST
states and arcs. The second most significant improvement is
from lattice pruning. Beside the parallelism benefit similar to
that of token passing, the GPU lattice pruning reduces the data
amount of D2H memory copy and separate kernel launch costs.
We obtain a 46-fold speedup if sequence parallelism is utilized
with GPU MPS, which reduces context switching of multi-
process [26]]. For comparison, similar multi-process parallelism
is applied in CPU but only results in a 1.8-fold speedup.

Although the speedup of atomic operation is not significant,
it removes the critical section discussed in Section [3:2] which
enables the use of older GPU architectures, shown in the next
section. Meanwhile, dynamic load balancing is a comparable
and general solution versus both static load balancing, shown in
the 4th row, and the graph partition in [18].

To make a fair comparison of the overall RTFs, we take a
separate GPU to do single-sequence inference for both baseline
and the GPU decoder. The single-sequence overall RTFs of
baseline and the proposed 1-best decoder are 0.18 and 0.03 ﬂ
Deep integration of inference and decoding can be future topics.

Table 2: Speedup of the Proposed Method (beam=14).

system search + lattice
RTF A RTF A

CPU 0.16 1.0X 0.27 1.0X
+ 8-sequence (1 socket)lﬂ - - 0.15 1.8X
GPU 0.016 10X | 0.080 3.3X
+ atomic operation 0.015 11X | 0.077 3.5X
+ dyn. load balancing 0.011 15X | 0.075 3.6X
+ lattice prune - - 0.028 9.7X
+ 8-sequence (MPS) 0.0035 46X | 0.0080 34X

4.3. Analysis

Figure 3] shows the proposed decoder works well in varieties of
ASR systems and consistently improves the speed.

¢ GPU architectures.

The proposed system can be used in GPU architectures older
than Kepler. It achieves a 3-fold speedup in K20 versus CPU.

¢ Acoustic model frame rates.

80OWER in this dataset is imprecise as we do not normalize the text
in its scoring using g/m. In LibriSpeech [34], we consistently observe
that OWER is 23% of WER (3.4 v.s. 14.7) for both CPU and GPU.

9The AM inference can be further improved by sequence batch-
ing [13]], which speeds up 10 times in our preliminary trials.

10The result is obtained from latgen-faster-mapped-parallel in Kaldi.
1-best decoder do not have such implementation.
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Figure 3: LM Size, Frame Rates and Architectures Comparison.

We examine an original frame rate (10 ms) acoustic model,
denoted in the dashed line. It works consistently better than the
CPU baseline with reduced frame rate. It is worth noting that
the 10 ms system is 3 times slower than its reduced frame rate
counterpart, as the speech stream is processed in serial. Thus
frame rate reduction [} |6] is crucial even in GPU decoders.

* Language model sizes and memory consumption.

The Fisher interpolated 4-gram LM is pruned to different sizes
and compiled to HCLG [9] for comparison (13MB, 62MB,
196MB, 258MB). The GPU decoder works consistently better
than the CPU baseline. Meanwhile, our current implementation
decodes at most 11GB WFEST in a 12GB TITAN GPU. Details
of memory optimization can be referred to our recent code
revision. Although working in a 2-pass framework, the memory
consumption can be further optimized in future. Moreover,
CPU speed changes slightly with WEST sizes from 196MB to
258MB. Because of per-transition beam pruning, the number of
tokens is not linear with WFST size. Our GPU decoder always
passes tokens through arcs in parallel and does not have the
phenomenon. Better scheduling strategies can be future work.

* Profiling.

Figure [4] compares the profiling result of the baseline CPU
decode;%l and our final system. The GPU decoder significantly
speeds up both token passing and lattice processing, which
take up most of the decoding time in CPU. Meanwhile, the
“other” part in GPU includes kernel launch time and some
synchronization pending. Optimizing them can be future topics.
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Figure 4: Profiling of the Decoders (best viewed in color).

5. Conclusions

In this work, we describe initial work on an extension of the
Kaldi toolkit that supports WFST decoding on GPUs. We
design parallel versions of decoding and lattice processing
algorithms. The proposed system significantly and consistently
speeds up the CPU counterparts in a varieties of architectures.

The implementation of this work is open-sourced. Future
works include the deep integration with sequence parallel
acoustic inference in GPUs.

I attice generation statistics in CPU is included in token passing.
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