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ABSTRACT

Lattice-rescoring is a common approach to take advantage
of recurrent neural language models in ASR, where a word-
lattice is generated from Ist-pass decoding and the lattice
is then rescored with a neural model, and an n-gram ap-
proximation method is usually adopted to limit the search
space. In this work, we describe a pruned lattice-rescoring
algorithm for ASR, improving the n-gram approximation
method. The pruned algorithm further limits the search
space and uses heuristic search to pick better histories when
expanding the lattice. Experiments show that the proposed al-
gorithm achieves better ASR accuracies while running much
faster than the standard algorithm. In particular, it brings a
4x speedup for lattice-rescoring with 4-gram approximation
while giving better recognition accuracies than the standard
algorithm.

Index Terms— automatic speech recognition, recurrent
neural network language model, lattice-rescoring, heuristic
search

1. INTRODUCTION

Language models are an essential component of automatic
speech recognition (ASR) systems. In recent years, with the
accessibility of greater computing power, recurrent neural
network language models (RNNLM) [1] have become pos-
sible and have quickly surpassed back-off n-gram models
[2] in various language-related tasks. However, because an
RNNLM theoretically encodes infinite history lengths, it is
virtually impossible to compile it to a static decoding graph;
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for this reason, RNNLMs are usually not directly used in de-
coding. The common method to take advantage of RNNLMs
for ASR tasks is a 2-pass method: we decode on a pre-
compiled decoding graph which is usually generated from a
back-off n-gram language model as the first pass; instead of
computing the 1-best hypothesis of the decoded results, we
maintain a set of possible hypotheses and then in the second
pass, use a more sophisticated neural-based model to rescore
the hypotheses. N-best list rescoring and lattice-rescoring
are among the most popular approaches.

In this work, we focus on lattice-rescoring, and propose
a pruning-based lattice rescoring method, which utilizes a
heuristic similar to that of A* search, greatly reducing the run-
time of the algorithm. This heuristic search also helps picking
better histories when expanding the lattices, resulting in better
ASR performances as measured by word-error-rates (WERs).

This project is developed as part of the open source speech
recognition toolkit Kaldi [3]. During its development, we
incorporated support for TensorFlow-based language models
[4] into Kaldi, and we made the incorporation available to
public. This will allow other Kaldi researchers to take ad-
vantage of TensorFlow developments, as well as TensorFlow
researchers being able to evaluate their model in ASR tasks.

2. BACKGROUND

Many researchers have used or improved upon lattice-rescoring
algorithms for ASR and related tasks. In [S]], two methods are
proposed to merge lattice-states in order to speedup lattice-
rescoring and reduce sizes of the generated lattices; In [6],
a refined pruning technique is used in order to reduce the
search space when rescoring lattices with long short-term
memory (LSTM) neural network language models. In [7],
a novel neural network structure succeeding word RNNLMs
(su-RNNLMs) is proposed and improvements in ASR tasks
could be seen by lattice-rescoring. In [8]], a pruned lattice-
rescoring method is applied to neural machine translation.



In [9], a lattice generation method based on [10] is used
for on-the-fly lattice-rescoring to be used in real-time ASR
applications.

Here we describe the baseline algorithm, i.e. the n-gram
approximation lattice-rescoring method [S]. We describe the
algorithm in the weighted finite state transducer (FST) frame-
work commonly used in most of the major speech recognition
systems [[11]].

2.1. Composition with LM-difference FST

Conceptually, RNNLM lattice-rescoring works by composing
the lattice (call this A) with a finite state acceptor (call this B)
that represents the difference between the n-gram FST that
was already in the lattice, and the RNNLM, with costs suit-
ably scaled if we are using an LM scale, so that by composing
with B we instantaneously remove part of the existing LM
cost and add in the new RNNLM cost. This FST B is gener-
ated on-demand by composing two deterministic finite state
acceptor one for the backoff language model, and one for
the RNNLM.

We note that in the baseline algorithm, the subtraction of
the old LM weight and adding new LM weight could be done
separately. However, performing them in a single rescoring
pass keeps the costs in B close to zero, which makes it possi-
ble to adopt heuristics in the search which is necessary in the
pruned algorithm described in Section 3]

2.2. Background: FST composition

We follow the basic FST composition algorithm to perform
lattice-rescoring. The reader can refer to [[12] for a more pre-
cise explanation, but the basic algorithm is as follows. Sup-
pose we are composing C' = A o B. Each state ¢ in the output
FST corresponds to a pair of states (a, b), and each arc in the
output FST corresponds to a pair of arcs where the output la-
bel of the arc in A matches with the input label of the state
in B (glossing over ¢ symbols and final-states). The algo-
rithm can be implemented with a queue of state-pairs (a, b)
for which arcs out of them need to be expanded. The queue
discipline does not matter because we will eventually process
all the state pairs that correspond to reachable states in the
output.

2.3. An n-gram approximation method

An exact lattice-rescoring algorithm in practice is not feasible
because the resulting lattice grows exponentially with respect
to the depth of the original lattice. Usually an n-gram approx-
imation algorithm is used to limit the size of B. The algorithm
works by merging history states in B that are the same in the
(n — 1) most recent words.

IThink of an acceptor as an FST where the input and output labels are the
same, for current purposes
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Fig. 1. Examples of lattices

For example, if the original lattice is the one shown in Fig-
ure[T]a, then the (exact) LM-difference FST B would have a
topology shown in Figure [I|b, where each state corresponds
to a unique history, and the weights associated with its arcs
reflect the correct RNNLM weight computed from the cor-
rect histories. When using a 3-gram approximation, the LM-
difference FST B’ is shown in Figure c, where state 4 and
8 in (b) are merged into a single state 4 (because they have
the 2-word history (c, d)), and it encodes either history
a,c,d or b,c,d. This choice is made arbitrarily during
the composition algorithm depending on which sequence is
first processed, and could potentially affect the computation
of p(ele, d).

Using n-gram approximation allows much less compu-
tation and prevents the output lattice from exponentially ex-
ploding. However this speedup is achieved at a cost of ac-
curacy — longer-than-n history words will not be exploited in
RNNLM, and this results in worse performances.

3. PRUNED LATTICE-RESCORING ALGORITHM

Our proposed lattice-rescoring method is a kind of pruned
FST composition with a priority queue based on a heuristic
that allows us to expand the “probably best” paths first.

3.1. Pruned composition

What we are implementing here is partial, pruned compo-
sition, where not all possible arcs and states would be pro-
cessed. We use a priority queue, based on a heuristic that is
an approximation to the best cost we are likely to get from ex-
panding a particular arc. The queue is, conceptually, a queue
of arcs: that is, when we pop an element from the queue it
corresponds to a state ¢ (which can be mapped to a state-pair
(a, b)), together with a particular arc leading from state a in
the lattice that needs to be expanded.

In our application, A is an epsilon-free acyclic lattice and
B is an epsilon-free, deterministic acceptor, which simplifies



certain things (it means, for instance, that there can be at most
one arc leaving b that matches our arc leaving a).

3.2. Heuristic

In designing the heuristic, we assume that the cost contribu-
tions from B are small because B represents a difference of
two language models. For the states in lattice A, we pre-
compute “forward” and “backward” Viterbi costs for each
state a. The forward cost «(a) is the cost of the best path
from the start-state to a, and the backward cost 8(a) is the
cost of the best path from a to a final-state (including the final
cost).

We also define «(c) for a state ¢ in the composed result
C, as the cost of the best path from the start-state to ¢, and
B(c) as the cost of the best path from c to a final-state (in-
cluding the final-cost), or oo if there is no such path. For
all these (3 quantities it is easy to get arc-level analogues of
them (by limiting the paths to those leaving via a certain arc),
but we will not develop specific notation for that. We will
use the state-level notation for clarity, but the reader should
understand that the queue is really on the individual-arc level.

Now, a(c) + B(c) will not be a very good heuristic at all
because if we have not already expanded a state ¢, its 5(c)
will always be +o00. The same logic applies at the arc level.
So if a state ¢ corresponds to a pair (a,b), we use H(c) =
a(c) + B(a) as the basic heuristic. The intuition here is that
the extra costs from B are close to zero so 3(a) will be close
to what 3(c) would be after expansion.

We next make a refinement. One concern is that for long
utterances, if the RNNLM is systematically better than the
baseline LM, the heuristic above would expand more states
towards the end of the utterance than the beginning. So we
make it

H{(c) = a(e) + B(a) +4(c) (D

where d(c) is a correction factor that reflects how much we
expect ((c) to differ from 8(a). We compute §(c) as follows:
For any state c corresponding to a pair (a, b) where /3(c) is not
infinity, we let 6(c) = S(c) — B(a). Otherwise we “borrow”
the 0(c) from the previous state on the best path from the ini-
tial state to state ¢ (we compute this in topological order, so
this is always defined). As a special case, if the initial state
has a 3(c) of infinity, we let its §(c) value be zero.

3.3. Freshness

An exact implementation of the heuristic is not very efficient,
because the computation a(c), B(c) and §(c) is quite costly.
We use a work-around to solve this issue: most of the time we
use stale values of these quantities that may be worse than (i.e.
greater than) the exact value, and periodically we update all
of them, using a schedule that doesn’t affect the O(n) runtime

of the algorithn{}

3.4. Termination

We terminate the algorithm based on a beam — Specifically,
if the heuristic H(c) is larger than the current best-path cost
of the output lattice plus the beam, we neglect to process the

stat C.

4. EVALUATION

We evaluate the algorithm for ASR tasks in 4 speech corpora,
namely AMI-THM, Switchboard (SWBD), Wall Street Jour-
nal (WSJ) and LibriSpeech (LIB). All the acoustic models
are trained using the open source speech recognition toolkit
Kaldi, with either TDNN [[13]] or lattice-free maximum mu-
tual information (MMI) [14] models; Backstitch optimiza-
tion method [[15]] is used during acoustic model training. The
decoding is done on 3-gram language models, implemented
with OpenFst [16]], with explicit pronunciation and silence
probability modeling as described in [17]. The RNNLMs are
trained with TensorFlow [4]], using the objective function de-
scribed in [[18] which prevents the need to compute a nor-
malization term during test time scenarios. We compare the
pruned lattice-rescoring algorithm with the n-gram approxi-
mation algorithm described in Section [2.3] denoted as “stan-
dard”; for the pruned lattice-rescoring experiments, we fix the
beam size to be 6. For SWBD, speed perturbation [[19] is used
to further improve the acoustic model.

4.1. Rescoring Speed

Figure 2| compares the running speed for the 2 algorithms un-
der different conditions. We report the average time it takes
in rescoring all AMI lattices among 30 roughly equal sized
jobs, and the numbers represent the average number of sec-
onds to finish rescoring under different n-gram settings. We
see that in all settings, the pruned algorithm runs faster than
the standard algorithm. When comparing the same method in
different n-gram settings, we notice that for the standard algo-
rithm the runtime grows exponentially at a factor larger than 2
w.r.t. n, while for the pruned algorithm it grows much slower.
In particular, the 4-gram pruned rescoring takes roughly the
same time as 2-gram standard rescoring, and runs roughly 4
times faster than the 4-gram standard rescoring conterpart; for
5-gram rescoring, the pruned algorithm runs 10x faster.

4.2. Rescored Lattice Sizes

Figure 3| shows the average number of arcs per frame of the
rescored AMI lattices under 2 different rescoring algorithms.

’Readers can find out more details of the algorithm at src/lat/
pruned-lattice-composition. {h, cc} of Kaldi’s repository

3We are speaking approximately here, because the algorithm is really at the
arc level


src/lat/pruned-lattice-composition.{h,cc}
src/lat/pruned-lattice-composition.{h,cc}

ARPA RNNLM rescoring with n-gram approximation
Corpus Test set  baseline 2-gram 3-gram 4-gram
standard pruned standard pruned standard pruned
AMI-IHM dev 24.2 24.5 24.0 23.7 234 234 23.3
(0.5) eval 254 25.8 25.0 24.6 24.4 24.3 24.2
SWBD swbd 8.1 8.6 8.2 7.4 7.2 7.2 7.1
(0.8) eval2000 12.4 12.9 12.3 11.7 11.5 11.5 11.3
WSJ dev93 7.6 7.2 6.9 6.4 6.2 6.4 6.2
(0.8) eval92 5.1 4.6 4.2 4.1 3.9 39 3.8
test-clean 6.0 55 51 4.9 4.8 4.8 4.7
LIB test-other 15.0 14.0 13.2 12.7 124 12.4 12.3
(0.5) dev-clean 5.7 5.0 4.8 4.4 4.3 4.3 4.3
dev-other 14.5 13.7 12.9 12.3 12.0 11.9 11.7

Table 1. WER of Lattice-rescoring of Different RNNLMs
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Fig. 2. Average run-time (in seconds) of lattice-rescoring
We can see that, using pruned lattice-rescoring algorithm al-

lows for a smaller sized lattice to be generated, consistent with
the results in Figure 2]
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Fig. 3. Average number of arcs per frame of rescored lattices

4.3. WER performances

In Table [I] we compare the WERs of different rescoring re-
sults as well as the un-rescored baseline. The baseline is

decoded from a 3-gram LM, during lattice-rescoring, the
3-gram model weight is interpolated with the computed
RNNLM weight, and the interpolation weight is tuned per
recipe (shown in the Corpus column in parenthesis). As we
can see, in all recipes, our pruning method achieves better
WERSs than the standard algorithm for all n-gram orders. We
notice for AMI, in the case of 2-gram, the standard rescoring
does not bring any improvement, but the pruned algorithm
brings a small gain over the un-rescored (3-gram) baseline. In
particular, the gain is larger for smaller n-gram orders, where
having longer correct histories brings more improvement to
the system.

Combining the results in Table [T} Figures [2] and 3] we
conclude that the proposed pruned lattice-rescoring algorithm
runs much faster, greatly reduces the output lattice size, and
improves ASR performances compared to the standard algo-
rithm.

5. CONCLUSION

In this paper, we describe a pruned algorithm for performing
lattice-rescoring with RNNLMs for speech recognition. Ex-
periments show that the pruned algorithm runs up to 4 times
faster than the standard algorithm in 4-gram approximation,
and 10 times faster in 5-gram approximation. Because it fol-
low a heuristic that first explores paths that are most likely
to be the best path, the pruned algorithm allows an n-gram
approximation algorithm to pick better histories in the lattice,
and thus performs better than the unpruned algorithms.
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