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Most basic model



j is speech class (phone in 
context)



Gaussian Mixture Model



Same number of Gaussians in 
each state



Full covariances shared between states 
(but different for each Gaussian)



Means and weights controlled by 
other parameters



State-specific vectors v
determine means and weights



Globally shared parameters Mi

and wi determine the mapping



Mapping of means is linear



Mapping of weights is log-linear 
(with renormalization)



There is a correspondence 
between Gaussians across states



Universal Background Model (UBM)

• The UBM is a single Gaussian Mixture Model 
that has been trained on all speech classes.

• It is used to initialize the SGMM training.

• It is used to prune the Gaussian indexes i
during training and decoding.



Likelihood evaluation

• Using the UBM, prune to a subset of the 
indices i, e.g. the top 10 of them.

• With appropriate pre-computation per frame, 
each Gaussian i in each state j can have its 
likelihood evaluated with a single dot product 
in the dimension of vj (typically 40 or 50).

• This can be even faster than a typical mixture-
of-Gaussians system.



Prerequisites for model building

• A previously trained system (conventional or 
SGMM based), needed for initial state 
alignment.

• A phonetic context tree (use normal methods 
to get this).

• A trained UBM.



Model initialization

• Typical initialization:

• Set dimension of vectors vj to feature-dim + 1 
(e.g. 39+1 = 40).

• Set vj to a unit vector * 1 0 0 0 … +

• Set Mi to [ mi I  ], where mi is i’th mean in UBM

• Set wi to zero vector (so all weights are equal)

• Effect is that the initial GMM in each state j is the 
same as the UBM (with equal weights).

• This is not the only way to initialize.



Model training

• Training is based on Expectation-
Maximization, the same as traditional GMM 
training

• Each iteration, we pick a parameter type (Mi

or wi or vj), accumulate statistics, update it.

• Each update step is guaranteed to increase 
likelihood on the training data.

• Can actually combine the updates on a single 
iteration, within certain constraints.



Model training: vj

• Auxiliary function is quadratic in vj:



Linear term



Quadratic term



Obtaining the auxiliary function

• and         computed from statistics 
accumulated from the data on each iteration of 
training (don’t accumulate directly: efficiency).

• The part of the auxiliary function that arises from 
the effect on the means is naturally quadratic

• The part that arises from the effect on the 
weights is not (we use a quadratic 
approximation).



• Mathematically speaking,       always invertible

• Practically speaking, not always invertible (can 
have very tiny eigenvalues)

• Will discuss this problem later

Update equation for vj



Model training: M

• Auxiliary function is also quadratic:

• obtained directly from the data;      derived 
from outer products of      weighted by data 
counts.

• Update is:

• Again we have a problem when      is not 
invertible (but it will normally be invertible).



Model training: w

• Training the “weight projection vectors”  wi is 
a little less easy: there is no natural auxiliary 
function

• It is possible to obtain an approximate 
quadratic auxiliary function that leads to an 
update that converges quite fast.

• The sufficient statistics for updating wi are the 
data counts for each state index j and 
Gaussian index i



Non-invertible matrices

• Sometimes the matrices that represent the 
quadratic terms in the auxiliary functions are 
singular.

• This situation corresponds to “don’t-care” 
directions in the parameter space (the linear 
term will also be zero in these directions).

• If we attempt to invert singular matrices we 
will tend to get unpredictable results.

• This is more of a problem with small datasets.



Solutions to non-invertibility
• Can introduce priors over the parameters.  

– Can make prior based on an ad-hoc formula with a t
value (like HTK-based MAP estimation) 

– OR estimate them from (estimated) parameters

• Can use a solution based on a “least squares” 
approach: get parameter with smallest squared 
value that gives maximum of auxiliary function
– This is not possible to do exactly given the form of the 

statistics we accumulate (because impossible to 
distinguish very small from zero eigenvalues) but can 
approximate it in an acceptable way.

• Can just refuse to update those parameters.
• Not clear what the best solution is.  



“Extra” stuff

• On top of the basic model, we can do various 
things.  Will summarize the more important of 
these in the next slides:

– Sub-states

– Speaker subspace

– Constrained MLLR



Sub-states

• Introduce within each state, a weighted 
mixture of what we previously had:

• New parameter type: mixture weights

• Sub-states help more than increasing dim of v



Speaker Subspace

• Use a similar approach to cover speaker variation:

• Do not make the mixture weights depend on 
speaker (makes decoding too slow)

• New parameters Ni (globally shared),  v(s)

(speaker specific)



Constrained MLLR

• A linear feature transformation

• Estimated for each speaker s

• During decoding this is independent of the model 
but the estimation formulas need to be specially 
formulated (full covariance)



Typical setup

• About 400-1000 Gaussians in the UBM

• Phonetic subspace and speaker subspace both have 
dimension 40-60

• Mix up to about half the number of sub-states that 
the baseline system had Gaussians

• Speaker-specific adaptation parameters v(s), A(s), b(s)

all to be estimated on speech only (not silence)

• Language model weight smaller than normal system, 
e.g. 8-10 vs. 13-14 with normal system

• Obtain UBM by clustering (diagonal) Gaussians from a 
normal system, doing full-covariance re-estimation



Issues with adaptation

• Speaker-vector adaptation not data-hungry

• Better done per segment rather than given reasonable 
segment lengths (not just 1 or 2 seconds)

• We developed the parameter-subspace CMLLR to enable both 
on per-segment basis

• Hard to get adaptation working in our setup:

– Segments were very short (most utterances 1 or 2 seconds)

– Adapting on silence frames bad! (needed to exclude them)

– Not clear whether the corpus, model, or feature extraction

– Full covariances for silence were getting floored eigenvalues
(floored to 1/1000 of the largest).   Strange silence features?



Software design

• This technique is more complicated than a normal 
mixture of Gaussians system – needs better testing.

• We separately unit-tested all easily testable code (e.g. 
linear algebra code)

• Printed out copious diagnostics; measured all auxiliary 
function changes and compared with likelihoods 

• Used as much as possible blocks that can be swapped 
in and out with other blocks, for easier testing

• E.g. we wrote two separate versions of the update 
code and used each to help debug the other.

• Debugged the calling code by writing a simple GMM 
based acoustic model with the same C++ interface as 
the SGMM.


