Simple Example of Subspace GMM Model

$$p(\mathbf{x}) = \sum_{i} w_{i} \mathcal{N}(\mathbf{x}; \mu_{i}, \Sigma_{i})$$

$$\mu_{i} = \mathbf{M}_{i} \mathbf{v}$$

$$\begin{bmatrix} \mu_{1} \\ \mu_{2} \\ \mu_{1} \\ \mu_{2} \\ \mu_{1} \\ \mu_{2} \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \end{bmatrix}$$

Let w_i and \sum_i be fixed in our model for now.

$$\mathbf{w}_i = rac{\exp{\mathbf{w}_i^T \mathbf{v}}}{\sum_k \exp{\mathbf{w}_k^T \mathbf{v}}}$$

Acoustic model for speech recognition

- Speech sounds are typically modeled by HMMs with state distributions given by GMMs.
- Typically, there are thousands of such models corresponding to context dependent phonemes.
- Many state distributions are very similar and exhibit certain regularities.

Acoustic Model with Subspace GMM

Parameters shared across HMM states (includes also covariance matrices)

State specific parameters are low dimensional vector

 V_1

 V_2

 V_3

Controlling ratio between shared and state specific parameters

- Increasing number of Gaussian component increase number of shared parameters
- Increasing size of vector v increase number of both shared and state specific parameters
- It would be useful to have the possibility of increasing number of state specific parameters without affecting the number of shared parameters

$\begin{bmatrix} \mu_1 \end{bmatrix}$		$m_{11} m_{12} m_{13} m_{14}$
μ_2		$m_{21} m_{22} m_{23} m_{24}$
μ_1		$m_{11} m_{12} m_{13} m_{14}$
μ_2		$m_{21} m_{22} m_{23} m_{24}$
μ_1		$m_{11} m_{12} m_{13} m_{14}$
μ_2	=	$m_{21} m_{22} m_{23} m_{24}$
μ_1		$m_{11} m_{12} m_{13} m_{14}$
μ_2		$m_{21} m_{22} m_{23} m_{24}$
log w		$\mathbf{W}_1 \mathbf{W}_2 \mathbf{W}_3 \mathbf{W}_4$
log w		$W_1 W_2 W_3 W_4$
log w		$W_1 W_2 W_3 W_4$
log w		$\begin{bmatrix} W_1 & W_2 & W_3 & W_4 \end{bmatrix}$

Substates – mixture of subspace GMM distributions

- •In our experiments, we keep splitting substates to reach the best performance
- •Can be seen as an alternative to splitting Gaussians in standard HMM system

Mixture

weights

Complete Model Definition (so far)

$$\mathbf{w}_{jmi} = \frac{\exp \mathbf{w}_i^T \mathbf{v}_{jm}}{\sum_h \exp \mathbf{w}_h^T \mathbf{v}_{jm}}$$

$$p(\mathbf{x}|j) = \sum_{m} c_{jm} \sum_{i} w_{jmi} \mathcal{N}(\mathbf{x}; \mu_{jmi}, \Sigma_{i})$$

Experimental part

Overview

- Baseline system
- Subspace system results
- Multilingual setup and results
- Training on very limited amount of data
- Interpreting subspace dimensions

Baseline - data

Acoustic data: CallHome databases

Language	Training set length	Evaluation set length
English	15.1h	1.8h
Spanish	16.5h	2.0h
German	14.7h	3.7h

Language model training:

- English: CallHome, Switchboard I, Switchboard Cellular, GigaWord and web data
- Spanish: CallHome and web data

Baseline systems

- PLP features
- Unadapted ML trained triphone models
- 16 Gaussians per state
- Bi-gram LM for English, tri-gram LM for Spanish
- No LVCSR build for German; results will be reported in terms of phone recognition performance
- The results are in agreement with those reported by other sites on this challenging task

	Accuracy (%)
CallHome English	45.3
CallHome Spanish	31.1

English subspace model training

- Initial configuration:
 - 1921 states
 - 400 Gaussians components
 - 39 dimensional features
 - 40 dimensional state vector v_{jkm}
 - 952k shared parameters
 - 77k state specific parameters (for single substate per state)
- Initial state alignment is taken from baseline system, later realigned by the model itself

Initial results for English

	Shared parameters	State-specific parameters	Accuracy (%)
Baseline	0	2427k	45.3
SGMM,	952k	77k	47.5
2k substates	902K	/ / K	47.5
SGMM,	952k	363k	50.3
9k substates	902K	303K	30.3

• For SGMM model, the number of state specific parameters is only a fraction of the number of shared parameters

Initial results for English

	Shared parameters	State-specific parameters	Accuracy (%)
Baseline	0	2427k	45.3
SGMM,	952k	77k	47.5
2k substates	302K	TTK	47.5
SGMM,	952k	363k	50.3
9k substates	902K	JUSK	50.5

- Increasing the number of substates allow us to balance the ratio between the state specific and the shared parameters
- Still the overall number of the parameters in the SGMM model is less than half compared to the baseline

Searching for optimal configuration

- Tunable parameters:
 - number of Gaussian
 - number of tied states
 - number of substates
 - state vector dimension
- We did not find SGMM to be sensitive to exact setting of the parameters
- Best configuration found was with 3937 tied states, 16k substates, 400 Gaussians and state vector dimension 40
 Accuracy = 50.8 %

Multilingual experiments

- Can data from another languages help to estimate share parameters more precisely?
- English, Spanish and German recognizers are trained together, where
 - each language has its own state specific parameters
 - shared parameters are shared also across languages
 - shared parameters are now trained on 46.3h of
 training data (English: 15.1h, Spanish: 16.5h, German: 14.7h)

Word recognition experiments

English system

System	Shared parameters	State-specific parameters	Accuracy (%)
baseline	0	2427k	45.3
English only, 400 G	952k	363k	50.3
All languages, 800 G	1904k	890k	52.1

Spanish system

System	Shared	State-specific	Accuracy (%)
	parameters	parameters	
baseline	0	2006k	31.1
Spanish only, 400 G	952k	312k	34.8
All languages, 800 G	1904k	762k	36.0

Phoneme recognition experiments

- Bigram phonotactic language models were trained on CallHome training sets
- Phoneme recognition accuracy is evaluated

System / Language	English	Spanish	German
# phonemes	42	27	45
baseline	45.1	53.8	43.9
Language only, 400 G	48.3	56.0	46.6
All languages, 800 G	49.8	56.3	47.4

- Training shared parameters across languages results in improved recognition performance for all the languages
- We benefit from increasing the number of shared parameters, which are now trained on more data

Experiments with limited amount of training data

- Can subspace model help us to build recognizer for a language with very limited amount of training data?
- English recognizers is trained, where
 - Shared parameters are trained on
 Spanish (16.5h) and German (14.7h) data
 - state specific parameters are trained on 1 hour of English

1 hour of training data

System	Accuracy (%)
HTK system, 500 tied states	27.6
SGMM, 1000 tied states, 20 dim, trained on English only	30.9
SGMM, 1500 tied states, 40 dim, shared parameters trained on Spanish + German	37.6

Interpreting subspace dimensions

- The state specific vectors v_{jkm} are relatively low-dimensional. Can we make the dimension even lower and visualize them?
- Substate system with 5 dimensions was trained
 - the accuracy is 34.2%
 - two most significant dimensions are shown

Vowel chart

Phoneme (state) space

Conclusions

- Subspace GMM system outperform classical GMM system
- Training of subspace GMM shared parameters on multiple languages gives us an advantage
- Subspace GMM system can be successfully used for very limited amount of training data
- Subspace GMM system allows us to visualize state specific parameters. This gives us insight to the system and can serve as an analysis tools.