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• Introduce the Notion of Identifying Low Dimensional 
Subspaces over Model Parameters

• Subspace Based Speaker Adaptation

• Generalization to a Generalized Joint Subspace Model of 
Acoustic Variability in ASR

OUTLINE
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Identifying Low Dimensional Feature Space –
Dimensionality Reduction

• Problems with high dimensional feature spaces:
– High computational complexity
– Poor generalization to unseen data 
– “Curse of dimensionality”

• Starting with high dimensional data, identify low 
dimensional feature space

– Principal components analysis (PCA) – Capture maximum 
variance

– Linear Discriminant Analysis (LDA) – Maximum class separability

height

weight   
Male

Female

Example:
2-D Feature Space: [height,weight]
2 Classes: male,female
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1e2e

Identifying Low Dimensional Feature Space
• Low dimensional feature,   , obtained from high 

dimensional feature,   , by a linear transformation:

height

weight   

Male

Female

1
Ty e x=2

Ty e x= Maximum Variance:Maximum Separability:

y
x

(Principal Components Analysis)(Linear Discriminant Analysis)
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Identifying Low Dimensional Model Space
• Suppose there are multiple data sets describing similar 

populations and models are to fit each data set:

• A low dimensional subspace can be identified that 
describes variation of the parameters

Form Super 
Vectors from
Models:
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Estimate
Sub-space 
Projection:

=μ Eν

0= +μ m Eν… or:
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• Continuous Gaussian Mixture Observation Density HMMs

• A speaker, S, is generally defined over a “super-vector” of 
the concatenated means of component Gaussians:

Speaker Space Adaptation – Super-vector
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State dependent 
Gaussian Mixtures

• Example: Wall Street Journal HMM
– Component Gaussians
– Feature Vector Dimension
– Super Vector Dimension

• Super-vector dimension can be very large

100,000C ≈
40F ≈
4,000,000CF ≈

Dimension:
M CF=

mixture components, and , with
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Speaker Space Based Adaptation

• Adapt Super-vector in Low Dimensional Subspace

• Training (Off-Line): Identify basis vectors of low dimensional speaker 
subspace from speaker dependent super-vectors:

where     is dimension, M, and     is dimension            where 

1, , K=E e er r
K

M K×

1, , Sμ μr r
K

sμr E K M<<

• Adaptation: Estimate weights                       from adaptation data to 
obtain adapted super-vector:

• Requires only a few seconds of  adaptation data
• Speaker subspace dimension 
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• Principal Components Analysis (EigenVoices)
– Starting from M dimensional super-vectors for each of S speakers to 

a K dimensional subspace

Subspace Identification – Training

Speaker Subspace
basis vectors

1
1 1
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S
C C

μ μ

μ μ
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Speaker Super-vectors for 
Speaker 1  through Speaker S
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( ,1) ( , )
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PCA

K<<CF

• Maximum Likelihood Clustering (Cluster Adapt. Training)
– Given SD training observation vectors,                          , SI HMM 

model,      , and initial estimate of                       ,
– Use EM algorithm to iteratively estimate weights and basis vectors

1 , ,s s s
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Limited Effect of “Global” Subspace Adaptation

• Substantial improvement with only 1 or 2 seconds of adaptation data
• Does not exhibit desirable asymptotic behavior
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Speaker Independent

Subspace based 
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WER vs. Adaptation Utterance Length on RM Task

Maximum Likelihood 
Linear Regression (MLLR)

[From Tang and Rose, 2008]
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Generalization to Subspace Models 
of Phonetic Variability

• Speaker space model is limited in the form of the variability 
it can represent

– Single vector in speaker space describes speaker specific 
variability

• Generalize this model in three ways:
1. Define multiple model subspaces over different regions of the 

feature space
2. Define state-specific,(rather than speaker specific) weight 

vectors to describe phonetic variation within these subspaces
3. Define joint model / speaker subspaces

• This is conceptually a straightforward generalization of the 
speaker subspace approach
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Generalization of Sub-Space HMM
• Review: Subspace Based Speaker Adaptation

– Single global subspace,    , defined over all Gaussians in HMM
– Single weight vector,      , describes variation in subspace
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• Generalization: Multiple Region-Specific Subspaces
– Separate Subspaces,     , defined for each Gaussian in a GMM
– Single weight vector describes variation in subspaces
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Generalization to Joint Subspace HMM

• Generalization: State-Specific Weight Vectors
– Subspaces,       , defined over shared pool of Gaussians
– State-specific weight vectors,      , describe phonetic var. in subspace

. ,
1

ˆ( | ) ( ; , )
I

j j i j i i
i

p x s w p x μ
=

= Σ∑,ˆ j i i jμ =M v

jv
iM

• Generalization: Joint Model / Speaker Subspaces
– Model and Speaker subspaces,         and      
– State-specific and speaker specific weight vectors       and   
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Subspace HMM
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Subspace HMM – Multiple Substates
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Empirical Trade-Off: 
Shared and State-Specific Parameters

• Example: Wall Street Journal HMM model:
• 6000 states, 100,000 Gaussians      ~8 Million parameters
• Possible Substate HMM Parameterizations:

Number of parametersParameter Allocation

3.7M

600K

235K

235K

State-Specific

4.3M600K1639256

5.4M4.8M11001024

2.65M2.4M1391024

835K600K139256

Total Shared 
Sub-

States

Sub-
space 
Dim.

UBM 
Gaussians
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Summary

• The workshop is investigating a subspace based 
alternative to HMM models that includes:

1. multiple model subspaces defined over different regions of the 
feature space

2. state-specific weight vectors for describing phonetic variation 
within these subspaces

3. joint model / speaker subspaces

• Workshop goals are to investigate:
– Potential for sharing training data across languages and task 

domains
– Empirical trade-off between number of Gaussians, states, sub-

states, and sub-state dimension
– Effects of joint subspaces: modeling both phonetic and speaker 

variation


