JHU CLSP Workshop 2009

Motivating Sub-Space Modeling for Automatic Speech Recognition

OUTLINE

- Introduce the Notion of Identifying Low Dimensional Subspaces over Model Parameters
- Subspace Based Speaker Adaptation
- Generalization to a Generalized Joint Subspace Model of Acoustic Variability in ASR

Identifying Low Dimensional Feature Space – Dimensionality Reduction

- Problems with high dimensional *feature spaces*:
 - High computational complexity
 - Poor generalization to unseen data
 - "Curse of dimensionality"
- Starting with high dimensional *data*, identify low dimensional feature space
 - Principal components analysis (PCA) Capture maximum variance
 - Linear Discriminant Analysis (LDA) Maximum class separability

Identifying Low Dimensional Feature Space

Low dimensional feature, y, obtained from high dimensional feature, X, by a linear transformation:

4

Identifying Low Dimensional Model Space

• Suppose there are multiple data sets describing similar populations and models are to fit each data set:

• A low dimensional subspace can be identified that describes variation of the parameters

Form Super
Vectors from
$$\mu^{1} = \begin{bmatrix} \mu_{1}^{1} \\ \vdots \\ \mu_{8}^{1} \end{bmatrix}, \dots, \mu^{N} = \begin{bmatrix} \mu_{1}^{N} \\ \vdots \\ \mu_{8}^{N} \end{bmatrix}$$
 Estimate $\mu = \mathbf{E}\mathbf{v}$
Sub-space
Projection: \dots or: $\mu = \mathbf{m}_{0} + \mathbf{E}\mathbf{v}$

Speaker Space Adaptation – Super-vector

Continuous Gaussian Mixture Observation Density HMMs

• A speaker, S, is generally defined over a "super-vector" of the concatenated means of component Gaussians:

$$\vec{\boldsymbol{\mu}}^{s} = \begin{bmatrix} \mu_{1}^{s} \\ \mu_{2}^{s} \\ \vdots \\ \mu_{C}^{s} \end{bmatrix} \quad \begin{cases} \text{Dimension:} \\ M = CF \end{cases}$$

- Example: Wall Street Journal HMM
 - Component Gaussians $C \approx 100,000$
 - Feature Vector Dimension $F \approx 40$
 - Super Vector Dimension $CF \approx 4,000,000$
- Super-vector dimension can be very large

Speaker Space Based Adaptation

- Adapt Super-vector in Low Dimensional Subspace
- Training (Off-Line): Identify basis vectors of low dimensional speaker subspace from speaker dependent super-vectors:

$$\vec{\mu}^1,\ldots,\vec{\mu}^S$$
 \longrightarrow $\mathbf{E}=\vec{\mathbf{e}}^1,\ldots,\vec{\mathbf{e}}^K$

where $\vec{\mu}^{s}$ is dimension, *M*, and **E** is dimension $M \times K$ where $K \ll M$

• Adaptation: Estimate weights w_k^s , k = 1, ..., K from adaptation data to obtain adapted super-vector:

$$\hat{\vec{\mu}}^s = \vec{\mu}^{SI} + \sum_{k=1}^K w_k^s \vec{e}(k)$$

- Requires only a few seconds of adaptation data
- Speaker subspace dimension $K \approx 10 \rightarrow 100$

Subspace Identification – Training

- Principal Components Analysis (EigenVoices)
 - Starting from M dimensional super-vectors for each of S speakers to a K dimensional subspace

- Maximum Likelihood Clustering (Cluster Adapt. Training)
 - Given SD training observation vectors, $X^s = x_1^s, \ldots, x_T^s$, SI HMM model, λ^{SI} , and initial estimate of $\mathbf{E}^{(0)} = \vec{\mathbf{e}}^1, \ldots, \vec{\mathbf{e}}^K$,
 - Use EM algorithm to iteratively estimate weights and basis vectors

$$\hat{\Lambda}: \quad \hat{\vec{\mu}}^{s} = \vec{\mu}^{SI} + \sum_{k=1}^{K} w_{k}^{s} \vec{e}(k)$$

Limited Effect of "Global" Subspace Adaptation

[From Tang and Rose, 2008]

- Substantial improvement with only 1 or 2 seconds of adaptation data
- Does not exhibit desirable asymptotic behavior

Generalization to Subspace Models of Phonetic Variability

- Speaker space model is limited in the form of the variability it can represent
 - Single vector in speaker space describes speaker specific variability
- Generalize this model in three ways:
 - 1. Define *multiple model subspaces* over different regions of the feature space
 - 2. Define *state-specific*,(rather than speaker specific) *weight vectors* to describe phonetic variation within these subspaces
 - 3. Define *joint model / speaker subspaces*
- This is conceptually a straightforward generalization of the speaker subspace approach

Generalization of Sub-Space HMM

- *Review:* Subspace Based Speaker Adaptation
 - Single global subspace, N, defined over all Gaussians in HMM
 - Single weight vector, $v^{(s)}$, describes variation in subspace

$$\hat{\mu}_{j,m}^{(s)} = \mu_{j,m}^{SI} + \mathbf{N}v^{(s)} \qquad \begin{bmatrix} \hat{\mu}_1^s \\ \hat{\mu}_2^s \\ \vdots \\ \hat{\mu}_C^s \end{bmatrix} \xrightarrow{\mathbf{N}} p(x \mid s_j) = \sum_{m=1}^M w_{j,m} p(x; \hat{\mu}_{j,m}^{(s)}, \Sigma_{j,m})$$

- Generalization: Multiple Region-Specific Subspaces
 - Separate Subspaces, N_i , defined for each Gaussian in a GMM
 - Single weight vector describes variation in subspaces

$$\hat{\mu}_{i}^{(s)} = \mu_{i}^{UBM} + \mathbf{N}_{i} v^{(s)} \begin{bmatrix} \hat{\mu}_{1}^{s} \\ \vdots \\ \hat{\mu}_{I}^{s} \end{bmatrix} \xrightarrow{(s_{1})} p(x \mid s_{j}) = \sum_{i=1}^{I} w_{j,i} p(x; \hat{\mu}_{i}^{(s)}, \Sigma_{i})$$

Generalization to Joint Subspace HMM

- **Generalization:** State-Specific Weight Vectors
 - Subspaces, \mathbf{M}_i , defined over shared pool of Gaussians
 - State-specific weight vectors, \mathbf{v}_i , describe phonetic var. in subspace

$$\hat{\boldsymbol{\mu}}_{j,i} = \mathbf{M}_i \mathbf{v}_j \qquad p(x \mid s_j) = \sum_{i=1}^{I} w_{j,i} p(x; \hat{\boldsymbol{\mu}}_{j,i}, \boldsymbol{\Sigma}_i)$$

- Generalization: Joint Model / Speaker Subspaces
 - Model and Speaker subspaces, \mathbf{M}_i and \mathbf{N}_i
 - State-specific and speaker specific weight vectors \mathbf{v}_j and $v^{(s)}$

$$\hat{\boldsymbol{\mu}}_{j,i}^{(s)} = \mathbf{M}_i \mathbf{v}_j + \mathbf{N}_i \boldsymbol{v}^{(s)}$$

Empirical Trade-Off: Shared and State-Specific Parameters

- Example: Wall Street Journal HMM model:
- 6000 states, 100,000 Gaussians >~8 Million parameters
- Possible Substate HMM Parameterizations:

Parameter Allocation			Number of parameters		
UBM Gaussians	Sub- space Dim.	Sub- States	Shared	State-Specific	Total
256	39	1	600K	235K	835K
1024	39	1	2.4M	235K	2.65M
1024	100	1	4.8M	600K	5.4M
256	39	16	600K	3.7M	4.3M
Computer Engineering					

Summary

- The workshop is investigating a subspace based alternative to HMM models that includes:
 - 1. *multiple model subspaces* defined over different regions of the feature space
 - 2. state-specific weight vectors for describing phonetic variation within these subspaces
 - 3. joint model / speaker subspaces
- Workshop goals are to investigate:
 - Potential for sharing training data across languages and task domains
 - Empirical trade-off between number of Gaussians, states, substates, and sub-state dimension
 - Effects of joint subspaces: modeling both phonetic and speaker variation

