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OUTLINE

 Introduce the Notion of Identifying Low Dimensional
Subspaces over Model Parameters

o Subspace Based Speaker Adaptation

« (Generalization to a Generalized Joint Subspace Model of
Acoustic Variability in ASR
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ldentifying Low Dimensional Feature Space —
Dimensionality Reduction

 Problems with high dimensional feature spaces:
— High computational complexity
—  Poor generalization to unseen data
—  “Curse of dimensionality”
e  Starting with high dimensional data, identify low
dimensional feature space
—  Principal components analysis (PCA) — Capture maximum

variance
—  Linear Discriminant Analysis (LDA) — Maximum class separability
y
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ldentifying Low Dimensional Feature Space

« Low dimensional feature, Y, obtained from high
dimensional feature, X, by a linear transformation:

Maximum Separability: Y = eg X Maximum Variance: Y = elT X
(Linear Discriminant Analysis) (Principal Components Analysis)
4 weight
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ldentifying Low Dimensional Model Space

« Suppose there are multiple data sets describing similar
populations and models are to fit each data set:
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« Alow dimensional subspace can be identified that
describes variation of the parameters
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Speaker Space Adaptation — Super-vector
e Continuous Gaussian Mixture Observation Density HMMs

a4 g9 33

a9 dg3 dzo
State dependent o o e

Gaussian Mixtures b;() by( ) by( )

cj%

P(X[8j)= D Wi, j fm j (%), with C = >'C,, mixture components, and fry j(X) N [Y;ﬁm,j ,Zm,j}

m=1

o A speaker, S, is generally defined over a “super-vector” of
the concatenated means of component Gaussians:

S \

H  Example: Wall Street Journal HMM
~s Ho : . — Component Gaussians C ~100,000
no=| . ¢ Dimension: _ _
: M = CF — Feature Vector Dimension F =40
— Super Vector Dimension CF = 4,000,000

e Super-vector dimension can be very large
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Speaker Space Based Adaptation

Adapt Super-vector in Low Dimensional Subspace

Training (Off-Line): Identify basis vectors of low dimensional speaker
subspace from speaker dependent super-vectors:

=1 —S -1 —-K
n,...,pn m—)- E=e¢,...,¢

where pi’is dimension, M, and E is dimension M xKwhere K <<M

Adaptation: Estimate weights w®,k =1,..., K from adaptation data to
obtain adapted super-vector:

~ K
i =+ wiE(K)
k=1

Requires only a few seconds of adaptation data
Speaker subspace dimension K =10 —100
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Subspace Identification — Training

* Principal Components Analysis (EigenVoices)

— Starting from M dimensional super-vectors for each of S speakers to
a K dimensional subspace

goaeerm o PCA el - é(L K)
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Speaker Super-vectors for Speaker Subspace
Speaker 1 through Speaker S basis vectors

e Maximum Likelihood Clustering (Cluster Adapt. Training)

— Given SD tralnlng observation vectors, X° = x . ,xﬁ , SI HMM
model, A% and initial estimate of E® =g, ... &

— Use EM algorithm to iteratively estimate welghts and basis vectors
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Limited Effect of “Global” Subspace Adaptation
V¥4ER vs. Adaptation Utterance Length on RM Task
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[From Tang and Rose, 2008]

e Substantial improvement with only 1 or 2 seconds of adaptation data
* Does not exhibit desirable asymptotic behavior
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Generalization to Subspace Models
of Phonetic Variabllity

* Speaker space model is limited in the form of the variability
It can represent

— Single vector in speaker space describes speaker specific
variability

 Generalize this model in three ways:

1. Define multiple model subspaces over different regions of the
feature space

2. Define state-specific,(rather than speaker specific) weight
vectors to describe phonetic variation within these subspaces

3. Define joint model / speaker subspaces

 This is conceptually a straightforward generalization of the
speaker subspace approach
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Generalization of Sub-Space HMM

« Review: Subspace Based Speaker Adaptation
— Single global subspace, N, defined over all Gaussians in HMM
—  Single weight vector, V(S), describes variation in subspace

o
A =S e | L p(x]s)) = Zw, P0G A2 m)
i |= &)

« Generalization: Multiple Region-Specific Subspaces
—  Separate Subspaces, N;, defined for each Gaussian in a GMM
—  Single weight vector descrlbes variation in subspaces

* p(x|s;) = Zw,.p(x a2
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Generalization to Joint Subspace HMM

« Generalization: State-Specific Weight Vectors
— Subspaces, M;, defined over shared pool of Gaussians
—  State-specific Welght vectors, V , describe phonetic var. in subspace

|
Aji =My p(x|sj) =D WjiP(X iy, %)
i1

« Generalization: Joint Model / Speaker Subspaces

—  Model and Speaker subspaces, M; and N,
—  State-specific and speaker specific Welght vectors Vj and v

ﬁSS,) =M;v; +N; v(s)
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Subspace HMM
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Subspace HMM — Multiple Substates
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Empirical Trade-Off:
Shared and State-Specific Parameters

Example: Wall Street Journal HMM model:
6000 states, 100,000 Gaussianst—)~8 Million parameters
Possible Substate HMM Parameterizations:

Parameter Allocation Number of parameters
Sub-
Sub-
UBM space Shared | State-Specific Total
Gaussians : States
Dim.

256 39 1 600K 235K 835K
1024 39 1 2.4M 235K 2.65M
1024 100 1 4.8M 600K 5.4M

39 16 600K 3.7M 4.3M
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Summary

« The workshop is investigating a subspace based
alternative to HMM models that includes:
1. multiple model subspaces defined over different regions of the
feature space
2. state-specific weight vectors for describing phonetic variation
within these subspaces

3. joint model / speaker subspaces

« Workshop goals are to investigate:
—  Potential for sharing training data across languages and task
domains
—  Empirical trade-off between number of Gaussians, states, sub-
states, and sub-state dimension
—  Effects of joint subspaces: modeling both phonetic and speaker
variation
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