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Abstract
We describe a Monte Carlo method for model-space noise adap-
tation of Gaussian mixture models (GMMs). This method com-
bines a single-Gaussian noise model with the GMM speech
model to produce an adapted model. It is similar to Parallel
Model Combination or model-space Joint, except that it applies
to spliced and projected MFCC features rather than to MFCC
plus dynamic features. We demonstrate the necessity of re-
estimating the noise using both the silence and speech frames
rather than just estimating it from silence frames, and obtain
improvements on a matched test set without added noise using
a system that includes all standard adaptation techniques.
Index Terms: speech recognition, noise adaptation

1. Introduction
In this paper we introduce a Monte Carlo method for model-
space adaptation of Gaussian mixture speech models to noise
conditions, given a Gaussian representing the noise. The
method is applicable to speech features derived by splicing
frames of MFCC features followed by a projection, and may
be compared with techniques such as Parallel Model Combina-
tion [1] and Joint [4], which perform similar adaptation for fea-
tures derived from MFCC features and their temporal deriva-
tives. We also show how to re-estimate the noise Gaussian to
maximize the combined model’s likelihood, and we demon-
strate that doing so rather than just estimating the noise from
the silence frames is essential.

Our method is similar to Data-driven Parallel Model Com-
bination (DPMC) [1], which similarly uses Monte Carlo tech-
niques to combine speech and noise; the main difference is that
DPMC re-estimates entire HMM states together rather than just
Gaussians and it is harder to envisage efficient approximations
to DPMC for this reason. Unlike [1], we also cover noise re-
estimation and general feature transforms.

2. Noise modeling
We can classify noise modeling techniques into four different
types, as illustrated in Figure 1:

i. Noise removal, which produces a point estimate of the
clean speech that is independent of the speech state, e.g.,
SPLICE [6].

ii. Noise removal with uncertainty, which produces a distri-
bution over clean speech, e.g., Joint uncertainty decod-
ing [3]1 and SPLICE with uncertainty [8].

iii. Model adaptation, in which the speech model is com-
bined with model of the noise to obtain a speech-plus-
noise model, e.g., Vector Taylor Series [2], Parallel
Model Combination [1] or model-based Joint [4].

1With caveats: the distribution depends on the speech state

Figure 1: Four categories of noise modeling technique

iv. Joint modeling of speech and noise, in which the like-
lihood of an observation under a combined speech-
plus-noise model is computed from a noise model
and a speech model without ever computing the (non-
Gaussian) combined model itself. This was used for
separation of speech from speech in [10]; these tech-
niques are currently practical only for log-FFT features,
not MFCC. Algonquin [9] is one such algorithm.

The four types of techniques each have advantages and dis-
advantages. Noise removal (i) can never be exact because the
estimate of the clean speech should depend on the speech state;
however, it is the easiest technique to combine with other mod-
eling techniques such as discriminative training. The other three
types of noise modeling (ii, iii, and iv) can, in principle, provide
an exact estimate: for a single-state noise model, the three types
of method are in a sense equivalent, but they lead to different
classes of approximations. The Monte Carlo adaptation method
we describe here is a model adaptation (iii) approach.

3. Monte Carlo Model-Space Noise
Adaptation

Our Monte Carlo method for noise adaptation produces a new
speech-plus-noise model for each utterance by combining every
Gaussian mixture component in a speech model with a single,
diagonal Gaussian model of the noise. Because the noise model
has very few parameters, it can be re-estimated for each utter-
ance. We combine the Gaussians (one speech component and
the noise model) by drawing pairs of samples, one from each
Gaussian, lifting the samples into the spliced Mel-frequency
power domain, adding up the signal power in each Mel bin,
projecting back to the recognition feature space, and computing
the mean and (diagonal) variance of the samples.

Our raw MFCC features are computed using 25-ms win-
dows with a 10-ms shift and a bank of 40 partially overlap-
ping triangular filters that are equally spaced on the Mel scale.
If VTLN is used, the VTLN warping changes both the loca-



tions and widths of the filters. The log of the power in each
Mel bin is computed, and a cosine transform that computes the
13 lowest-order coefficients (including c0) produces the MFCC
features. The recognition features are obtained by normalizing
the MFCC features per speaker to have zero mean (and unit
variance when VTLN is used), splicing across 9 frames to ob-
tain 117-dimensional features, and then projecting to 40 dimen-
sions using an LDA transform where the classes are the context-
dependent states in our acoustic model. The 40 retained di-
mensions are diagonalized using a global semi-tied covariance
(STC) and speaker-based constrained MLLR (CMLLR).

The cosine transform, variance normalization (if used),
LDA projection, and rotation with STC and CMLLR (if used)
may be summarized in a single, large matrix that transforms
spliced log Mel powers to the recognition features. We approxi-
mate this transformation matrix using a square matrix as we will
need to invert it. First, we keep all dimensions rejected by the
LDA projection and model them using a single zero-mean, unit
variance Gaussian. This model is appropriate because we use
cepstral mean subtraction and the LDA transformation is nor-
malized so it produces features with unit variance. The dimen-
sion loss caused by truncating the 40 MFCC coefficients to 13
is unavoidable, so we imagine that our features were computed
from 13 bins instead of 40. Denoting the matrix that computes
the 13-dimensional cosine transform as C, the diagonal matrix
of multiplicative factors in any cepstral variance normalization
as V, the LDA transformation (including rejected dimensions)
as T, the semi-tied covariance transformation matrix as S, and
the square part of any CMLLR transformation as A, the total
transformation (from the imagined 13 Mel bins) is:
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Constant offsets due to cepstral mean subtraction and CMLLR
may be ignored as they would not affect our algorithm.

To combine a pair of 40-dimensional diagonal speech
and noise Gaussians, we extend them to 117 dimensions us-
ing zero means and unit variances for the rejected dimen-
sions, draw N (e.g., N=100) pairs of samples (si,ni) from
the Gaussians, lift into the spliced log Mel power domain
using the inverse total transformation (e.g., s′i = siM

−1),
sum the powers dimension-wise to get the combined vec-
tor a′

id = log(exp(s′id) + exp(n′
id)), and project back to get

ai = Ma′
i. The combined Gaussian is obtained by computing

the sample mean and variance of the N vectors ai in the 40
retained dimensions.

3.1. Sampling technique

We draw N samples (e.g., N=100) a priori from a 117-
dimensional Gaussian distribution and normalize the set of N

points to have zero mean and unit variance in each dimension
(this eliminates certain first-order random effects due to the
small sample size). We set the N + 1’th point to be the same
as the 1st point. Call this set of normalized random points pi.
Then, to obtain the sets of N random vectors si and ni, we sim-
ply set si to pi and ni to pi+1, using appropriate scalings and
shifts to obtain the correct means and variances in the retained
dimensions.

3.2. Computation on demand

This technique is extremely expensive, so it is necessary to do
this computation only for the Gaussians which we need to eval-

uate. Within a mixture of Gaussians, we first compute the like-
lihoods of all components, and then retain and noise-adapt only
those components for which the log-likelihood is within a beam
(e.g, 2.0) from the most likely component.

4. Noise model initialization and training

The diagonal-variance Gaussian noise model is computed per
utterance. It is initialized from the sample mean and variance
of all frames that are labeled as silence in an initial decoding
pass. Re-estimation of the noise model relies on weak-sense
auxiliary functions [11]. To maximize the likelihood of the data
under the speech plus noise model, on each frame we accumu-
late the gradient of the likelihood with respect to the parame-
ters of the noise Gaussian, and at the end of the utterance we
compute “fake” mean and variance statistics with a count equal
to the number of frames in the utterance, these statistics being
computed so that the gradient of the standard auxiliary function
is the same as the total gradient we computed.

4.0.1. Gradient of the likelihood w.r.t. noise model parameters

Before going into details, note that the derivative of a scalar-
valued function with respect to its inputs may be computed in
the same amount of time it takes to compute the function itself,
provided that all intermediate values can be kept in memory.
The following computation is an instance of this.

Let the data likelihood, which is our objective function, be
f , and the gradient of f with respect to some vector x be ∂f

∂
x.

This is a vector having the same dimension as x. Let the param-
eters of the Gaussians in the speech model be 117-dimensional
means µj and diagonal variances Σj = σ2

jd, 1 ≤ d ≤ 117 for
each Gaussian j = 1 . . . J (the index runs over all states and
mixture components), where default parameters µjd = 0 and
σ2

jd = 1 are used for (d > 40). The noise model has parame-
ters µn and Σn.

The forward computation, in which we compute adapted
parameters µ̂j and Σ̂j for a speech Gaussian, j, is

sid = µjd + pidσjd (2)
nid = µnd + pi+1,dσnd (3)
s
′
i = M

−1
si (4)

n
′
i = M

−1
ni (5)

a
′
id = log(exp(s′id) + exp(n′

id)) (6)
ai = Ma

′
i (7)
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for i = 1 . . . N and d = 1 . . . 117.
Let the occupation probability of Gaussian j at time t be

γj(t) and the observation vector at time t be x(t). Then, the
auxiliary function for the likelihood (which we compute only
for accepted dimensions) is

f =

T
X
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From this we compute (differentiating backwards):
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If the objective function were a regular likelihood function
given the noise Gaussian and observed noise data with zeroth,
first and second order statistics γn, xn and Sn, we would have

∂f
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We use these equalities to create for the noise “fake” zeroth, first
and second order noise statistics as follows:

γn = T (23)
xnd = γnµnd + σ
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4.0.2. Updating the noise

The model update is the standard maximum-likelihood update
given these fake noise statistics. The update is stable close to
convergence, but is not always stable far from convergence. To
remedy this problem, if the K-L divergence from the previous
to the updated noise Gaussian is more than 1, or if any new vari-
ance element is negative, we increase γn by T , and recompute
the fake statistics (Equations 24 and 25), iterating until the K-L
divergence is less than 1. The update is iterative, with 8 itera-
tions typically being sufficient. Note that this approach requires
that the initial estimate of the noise have sufficient power. If it
does not, the gradient becomes zero. Therefore, initializing the
noise to that of the previous speaker is not a good idea.

4.1. Mean-only update

Much of the difficulty of model-space noise modeling tech-
niques such as this one comes from the need to estimate the
combined variance. Mean-only updates are much easier to
make efficient as the computation can take place dimension by
dimension in the spliced log Mel power domain. Therefore we

were motivated to investigate how important the variance up-
date is to our technique; if it is not important, then it becomes
much easier to make more efficient versions of this scheme. The
mean-only combination of the speech and noise Gaussians is
obvious in this case: we just compute the mean of the com-
bined points ai and ignore their variance, keeping the variance
from the original speech model. The training of the noise in the
mean-only context simply involves setting the objective func-
tion gradient with respect to the combined variance to zero, i.e.
Equation 13 becomes:

∂f

∂
σ̂

2
jd = 0 (26)

4.2. Speaker Adaptive Training

Since this is a speaker adaptation technique (more correctly:
utterance adaptation), it is natural to consider speaker adaptive
training in the same way as is done for other techniques like
VTLN, Constrained MLLR and MLLR. Model-space training
is possible in this scheme in a way that is analogous to the noise
update: the computation is symmetric with respect to the speech
and noise so we can use the same approach, the difference being
we need to accumulate statistics over all the data to update the
speech model. The limiting of the K-L divergence to 1 as with
noise has not been necessary in our system because none of the
speech Gaussians move that far.

5. Experimental conditions
Our training data is 50 hours of English news broadcasts ob-
tained by subsampling the 1996 and 1997 Hub4 training sets
(LDC97S44 and LDC98S71 respectively). The features are as
described above. We report results for a speaker-independent
(SI) system with 1000 quinphone context-dependent states and
30000 mixture components and for a speaker adaptively trained
i.e. CMLLR-SAT2 system having 3000 quinphone context-
dependent states and 50000 mixture components. The CMLLR-
SAT system uses VTLN and CMLLR (Constrained MLLR) in
training for speaker normalization. Our test set is the Dev04f
test set from the DARPA EARS project, which comprises
3 hours of speech from 6 broadcasts collected between 15
November and 1 December 2003, and includes 22.6K words.
The language model used for testing is a 3.3M 4-gram LM
trained on a corpus of 335M words.

6. Experimental Results
Noise modeling is done per utterance after all other adapta-
tions have been applied. We test three different systems: an
unadapted SI system, an adapted SI system that uses CMLLR
and MLLR in test only, and an adapted CMLLR-SAT system
that uses VTLN, CMLLR and MLLR. MLLR adaptation oper-
ates only on the model means, and uses a regression tree with a
minimum count of 3000 to estimate up to 16 transforms.

Table 1 shows the word error rate and per-frame likelihood
on the test set with no noise adaptation, noise adaptation with
the noise trained on silence and noise adaptation with the noise
re-estimated for various numbers of iterations to maximize like-
lihood. The line “None/pruned” refers to not using any noise
model, but only evaluating Gaussians within a margin of 2.0
log-likelihood from the best Gaussian within a state (to match
the computation with noise). We can see that noise modeling

2Normally known as SAT but we are currently also publishing re-
sults with MLLR-SAT so we make this explicit



Noise model Word Error Rate
SI adapted SI CMLLR-SAT

None 34.1% 30.8% 25.7%
None/pruned 34.1% 30.9% 25.9%
Silence 37.0% 32.4% 26.5%
1 iter 34.6% 30.4% 25.4%
2 iter 33.6% 30.1% 25.2%
4 iter 33.5% 30.2% 25.2%
8 iter 33.5% 30.3% 25.3%
16 iter 33.5% 30.3% 25.4%

Likelihood/frame
None -54.24 -52.54 -52.98
None/pruned -54.31 -52.60 -52.10
Silence -56.71 -56.20 -56.20
1 iter -54.48 -54.23 -54.61
2 iter -54.47 -52.47 -53.60
4 iter -54.04 -52.67 -52.56
8 iter -53.94 -52.54 -52.17
16 iter -53.93 -52.47 -52.07

Table 1: Noise adaptation and effect of noise re-estimation.

Noise model Word Error Rate
SI adapted SI CMLLR-SAT

None/pruned 34.1% 30.9% 25.9%
Mean+Variance 33.5% 30.3% 25.3%
Mean only 33.6% 30.4% 25.3%

Likelihood/frame
None/pruned -54.31 -52.60 -52.10
Mean+Variance -53.94 -52.54 -52.17
Mean only -53.79 -52.53 -52.05

Table 2: Noise adaptation (8 iterations of update) and effect of
variance update.

gives a substantial degradation when the noise is estimated from
the silence frames only. This is not surprising because the sys-
tem was trained under matched conditions (there is no more
noise in the test set than in the training set) so in effect we
are modeling the noise twice. We get about 0.5% absolute im-
provement from noise modeling when we re-estimate the noise,
which is surprising given that the test set is recorded under fairly
clean conditions and does not have artificially added noise. The
necessity of re-estimating the noise was also reported in [4].

Table 2 shows the effect of removing the variance part of the
update and updating the model mean only. There is very little
word error rate difference caused by not updating the variance.
The likelihood seems to actually increase somewhat. The fact
that variances make very little difference is good because almost
all of the difficulty in these types of computations arises from
the need to compute the updated variance; however, note that
the effect on WER may be SNR dependent ([1], p. 95).

We also tried updating the model parameters using the same
update technique used for the noise Gaussians; this involved ap-
plying our computation to all the training data (which is very
slow). We did this on the unadapted system and tested with 8
iterations of noise update in both train and test; the WER im-
proved from 33.5% to 33.4% and the likelihood changed very
little, from -53.94 to -53.92. In another experiment, modeling
the noise on a per-speaker rather than per-utterance level de-
graded WER from 30.3% to 30.6%.

Note that our system was built with MFCC features not
PLP [12] because PLP features are harder to convert back into

mel bin powers. A fully adapted CMLLR-SAT PLP system oth-
erwise similar to our fully adapted CMLLR-SAT MFCC base-
line gives a WER of 25.3% which is the same as our best noise
adapted results; however, if we take account of a 0.2% loss from
pruning away less likely Gaussians we can surmise that with a
full computation we would have gained 0.2% versus PLP.

7. Conclusions and future work
We have demonstrated a proof-of-concept noise adaptation
technique for use with spliced and projected MFCC features,
and have shown improvements on fairly clean data (no noise
added) with matched training. In our system the usefulness
of these types of approaches will be limited by the difficulty
of combining this approach with feature-space discriminative
training (e.g., fMPE), which gives much more improvement.
At this level of noise, even without discriminative training any
gains are canceled out by the need to use MFCC rather than
PLP features. Nevertheless, we hope that this approach may
be useful in higher-noise environments and where feature-space
discriminative training is not used. In particular, the observa-
tion that most of the improvement comes from mean adaptation
opens the door to much more efficient implementations.
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