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ABSTRACT

This paper describes the application of a discriminative HMM pa-
rameter estimation technique called Frame Discrimination (FD),
to medium and large vocabulary continuous speech recognition.
Previous work has shown that FD training can give better results
than maximum mutual information (MMI) training for small tasks.
The use of FD for much larger tasks required the development of
a technique to be able to rapidly find the most likely set of Gaus-
sians for each frame in the system. Experiments on the Resource
Management and North American Business tasks show that FD
training can give comparable improvements to MMI, but is less
computationally intensive.

1. INTRODUCTION

Previous research has shown that the accuracy of a speech recogni-
tion system trained using Maximum Likelihood Estimation (MLE)
can often be improved further using discriminative training. All
such techniques normally give much greater improvements in recog-
nition accuracy on the training data than on the test set except
where the number of parameters to be estimated is very low. Fur-
thermore the computation required to optimise discriminative ob-
jective functions is much higher than for standard Baum-Welch
(i.e. MLE) training.

This paper investigates a recently proposed [2] discriminative
objective function called Frame Discrimination (FD). In [2] it was
shown that on small isolated word recognition tasks FD gave im-
proved generalisation compared to maximum mutual information
estimation (MMIE) and yielded superior test-set accuracy. Here
we investigate the extension of FD to large vocabulary continuous
speech recognition.

FD consists of a class of objective functions, of the form:
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where

� 
 represents the speech data for the r’th utterance, and��� � the model corresponding to its transcription # 
 . The HMM! , also termed the denominator model (while �$� � is the nu-
merator model), is derived from the model �&%('�) which is used
to recognise speech. If ! were equal to � %('*) , we would have
the MMIE objective function. However in order to improve gen-
eralisation, FD uses a model ! which is less constrained than the
recognition network. In particular we focus on zero memory frame
discrimination. In this case, ! is a zero memory Markov chain,
whose output PDF consists of a weighted sum of all the PDFs in

the HMM set so that
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where
A 
 �8B  is the vector representing frame

B
of utterance E which

is of length F � E  , and ? 6
�8A 
 �8B  ( is the output PDF of state G . The

notation H 687,9I:J<*> indicates summation over all the states in the
recognition model �&K '�) , i.e, all states in all HMMs in the system.
The term

�C�8D 6 � L; represents the prior probability of observing
state

D 6 . This prior probability can conveniently be found from
the state occupation counts from the forward-backward algorithm
used in MLE training.

2. EXTENDED BAUM-WELCH RE-ESTIMATION

To optimise the parameters of HMMs when using rational objec-
tive functions such as FD, the extended Baum-Welch (EBW) re-
estimation formulae can be used. The EBW algorithm for ratio-
nal objective functions was introduced in [1] and developed in [3]
for the continuous density HMMs considered here. The EBW al-
gorithm has been successfully applied to MMIE optimisation for
both small and large vocabulary tasks [5].

The re-estimation formulae presented below have been found
to work well in practice although they can be only proved to con-
verge when a very large value of the constant M is used which in
turn leads to very small changes in the model parameters on each
iteration.

The update equations for the mean vector of mixture compo-
nent N of state O , PRQTS U , and corresponding variance vector, V�WQTS U ,
are as follows:

XP QTS U � Y�Z QTS U ���  0[ Z K '�)QTS U ���  ]\_^ M�PRQTS U
Ya` QTS U [ ` K '*)QTS U \_^ M b

XV WQTS U � Y�Z QTS U ��� W  �[ Z K '�)QTS U ��� W  ]\_^ M � V WQTS U ^ P WQTS U  
Y�` QTS U [ ` K '�)QTS U \_^ M [ XP WQTS U b

where the superscript cedgf indicates the denominator HMM ! .Z QTS U ���  represents the sum of the vectors
A

of the training data
weighted by the probability of occupying mixture N of state O at
that time frame when

A
occurs, i.e:
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where ` 
QTS U �8B  is the probability of occupying mixture N of stateO at time
B
. ` QTS U represents the estimated count of the number of

times mixture component N of state O is occupied:

` QTS U ���  � �	
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The constant D was set on a phone-by-phone basis as in [5],

subject to a floor at the maximum of ` QTS U and ` K '*)QTS U in the phone.
The use of a floor was found to improve both convergence of the
FD criterion and recognition performance.

The standard update equations for the mixture weights [3, 5]
can be used for estimating the mixture weights or as an alternative
the formulation given in [4] can be used.

2.1. Implementation Considerations

In re-estimating the parameters it is necessary to calculate the pos-
terior probability of each Gaussian in the system for each input
vector i.e.

` 
 S K '*)QTS U �8B  � � QTS U ? QTS U �8A 
 �8B  ( �C�8D 6 � !  
H Q 7�9�� <�� H ���U �� � QTS U ? QTS U �8A 
 �8B  ( �C�8D Q � !" (1)

where ? QTS U
�	�  is the Gaussian associated with mixture N of stateO , � QTS U is the mixture weight for the Gaussian and


 Q the num-
ber of Gaussians in the mixture for state O . Therefore ? QTS U
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must be calculated for each Gaussian in the system and for every
time frame and this calculation dominates the overall computation
required. Furthermore, for large vocabulary speech recognition
the HMM sets used often contain a very large number of Gaussian
components and therefore complete computation of the denomina-
tor of (1) would make the algorithm impractical.

To make FD practical for large HMM systems (1) should be
computed for just the most likely Gaussians in the system (which
together contribute nearly all the log likelihood per frame) and the
denominator of (1) computed over just those Gaussians. There-
fore, the Roadmap algorithm was developed with the aim of find-
ing the most likely Gaussians in the system for each speech frame.

3. THE ROADMAP ALGORITHM

The purpose of this algorithm is to find those Gaussians which
best match the input for each time frame, while minimising com-
putation. Associated with each Gaussian in the system is a list of
similar Gaussians which is used to navigate towards the best Gaus-
sian in the system. A detailed description of the algorithm is given
in [4].

3.1. Distance Measure

A widely used measure of the distance between two Gaussians is
the divergence. However for current purposes it was found that the
divergence overstates the difference between the Gaussians when
they have very different variances. Therefore an alternative dis-
tance measure was sought and one based on Gaussian “overlap”
developed.

Here the overlap between two univariate Gaussians is defined
as:

� �� / =1 �	�  b � / W 1 �	�  ( �������� ��� � N G�� �� / =1 �8A  b � / W 1 �8A  ( �� A

A suitable distance measure between univariate Gaussians is the
negative log of the overlap. To deal with multivariate Gaussians
with diagonal covariance matrices, the distance between corre-
sponding univariate Gaussians is summed over all dimensions to
finally give a distance measure:� ��� / =1 �	�  b � / W 1 �	�  ( � 	
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where
�

is a multivariate Gaussian ! ��� � P P P b�    , and
� 6 �	�  is the

univariate Gaussian ! �8A � P P P 6 b�   6 6  .The use of the overlap-based distance measure in the Roadmap
algorithm decreases the average reduction in total log probability
per frame by a factor of 7 relative to the case where divergence is
used and the measure may have utility in other applications where
a distance measure between two Gaussians is required.

3.2. Setting Up The Similarity Relation

For the roadmap algorithm to operate, for each Gaussian a list of
other similar Gaussians is required. This set of lists is called the
“roadmap” and following the analogy the lists represent the nearby
set of Gaussians to which there are “roads”.

The first stage is to obtain, for each Gaussian ! , a list of the
closest � Gaussians in the system, according to the distance mea-
sure defined above. In experiments reported here, � �#"%$

. A naive
implementation would involve finding the distance between each
pair of Gaussians, and would have taken time proportional to the
square of the number of Gaussians in the system. This is clearly
not suitable for very large HMM sets. An approximate iterative
scheme was therefore used which avoids this exhaustive search,
but finds the � closest Gaussians almost without fail. On each iter-
ation, the algorithm only examines Gaussians for potential inclu-
sion in ! ’s list that are already in the similarity lists for Gaussians
currently directly “connected” to ! . At the end of each iteration
the � most similar Gaussians are placed in a new list for ! . There-
fore on each iteration the distance between at most � W Gaussian
are computed for each ! . However the number is considerably less
than this since redundant computation is avoided.

The second stage adds to the similarity list of Gaussians close
to ! , those ? such that ! is in the list of ? . This avoids the problem
case where a Gaussian is not very close to any other Gaussians,
and may never appears in any of these lists.

The third stage of building the similarity lists removes redun-
dant entries: entries are not required if there already exists another
indirect route via an intermediate Gaussian. Redundancy is de-
fined more precisely in terms of the distance of the indirect route
from ! to ? via � :� � ! b �  '& $'( ) � � ! b ?  +* � � � b ?  '& $+( ) � � ! b ?  '* � � ! b �  ^ � � � b ?  '&-, ( . � � ! b ?  (
The removal of all these redundant links causes a modest increase
in the performance of the Roadmap algorithm.

Finally the similarity lists for each Gaussian are sorted in order
of distance which the closest Gaussians first in the list.

3.3. Finding the Best Gaussians

The Roadmap algorithm is a hill-climbing algorithm which for
each speech frame starts from an initial set of Gaussians and aims
to terminate with the most likely Gaussians for the input speech
vector. Firstly the log likelihood of each of the initial set of Gaus-
sians is evaluated. For the Gaussians which are most likely the



Gaussians close to those (from the similarity lists) are examined.
The idea is that the algorithm will eventually go towards the region
of Gaussians which are most likely given the input speech vector.

For such an algorithm, there is no way to know when (or if) the
most likely Gaussian in the entire system has been evaluated. The
best that can be done is to evaluate a fixed number of Gaussians L ,
and hope that the best Gaussians will be among them. At the end,
all Gaussians ? QTS U which have been evaluated are returned, along
with the calculated values ? QTS U

�8A 
 �8B  ( . These can then be used to
calculate the occupancies ` 
QTS U �8B  used in the extended BW update
equations.

In the following description of the Roadmap algorithm, Gaus-
sian functions will be denoted ! .The rule by which a Gaussian is
chosen to be computed is as follows: from among those Gaussians
which have already been evaluated, take the Gaussian ! which
gives the highest likelihood for the input. Then evaluate the first
Gaussian in ! ’s list, i.e, that closest to ! , if it has not already been
evaluated. Otherwise compute the next in ! ’s list. If all Gaussians
in ! ’s list have been evaluated, the same procedure is followed
for the Gaussian which gives the next best likelihood for the in-
put. If all Gaussians in the lists of all those which have been com-
puted have themselves also been evaluated, then evaluate a random
Gaussian. This situation can occur if there are no links (“roads”)
from an isolated region of Gaussians.

The set of Gaussians which is initially examined consists of
either a single arbitrary Gaussian or the best



Gaussians from

the last input frame. In the experiments reported here, the best 20
from the last input frame were used. It is found that in practice the
Roadmap algorithm can reliably find the most likely Gaussians in
the system for each frame while only evaluating a small percentage
of them (typically between 1 and 10%, decreasing with increasing
system size).

3.4. Performance

The performance of the Roadmap algorithm is judged by two mea-
sures: the average number of Gaussians calculated per time frame,
and the average decrease in total likelihood of the input per time
frame. This decrease in likelihood represents the sum of the Gaus-
sian likelihoods that are not calculated by the algorithm. In tests on
a HMM system with 9,500 Gaussian mixtures the Roadmap algo-
rithm gave only a 0.004 decrease in log likelihood per frame while
on average calculating 3.7% of the Gaussians in the system.

For comparison a number of different schemes of Gaussian se-
lection based on vector quantisation (VQ) techniques, which have
been widely reported in the literature to reduce the number of
Gaussians computed in an HMM-based speech recognition, were
also examined. One such VQ scheme with 256 codebook entries
and using a two level VQ gave an average decrease in log likeli-
hood per frame of 0.3 while computing 4% of the Gaussians in the
system.

It is important to know what effect the calculation of only a
fairly small subset of the Gaussians has on the performance of the
trained models, i.e., what loss in total log likelihood is acceptable.
Experiments showed that there was essentially no loss in recog-
nition performance with a reduction in log likelihood per frame
of up to 0.01 and the experiments reported below aimed to keep
the approximation from using the Roadmap algorithm within this
bound.
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Figure 1: FD criterion and RM feb91 accuracy varying with time

4. EXPERIMENTAL EVALUATION

Speech recognition experiments to evaluate FD have been con-
ducted on both the 1,000 word Resource Management (RM) task
and on the North American Business (NAB) News task using a 65k
word recognition system. In all cases initial MLE trained models
were used and then subsequent FD training was performed.

4.1. Resource Management Experiments

For the RM experiments, a set of decision-tree state-clustered cross-
word triphones were trained using MLE on the SI-109 training set
(3990 utterances) using HTK in the manner described in [7]. The
input speech for this system was parameterised as Mel-frequency
cepstral coefficients (MFCCs) and the normalised log energy; and
the first and second differentials of these values.

The final RM model set had 1577 clustered speech states and
versions with a single Gaussian per state and 6 Gaussians per state
were created. The models were tested using the standard word-
pair grammar on the 4 RM speaker independent test sets (feb89,
oct89, feb91 and sep92) which each contain 300 utterances.

After the MLE models had been created a number of iterations
of FD training were performed on both the single Gaussian and 6
mixture component systems. Figure 1 shows that the FD objective
function increases as training proceeds and gives the changes in
error rate. Note that the 6-component system shows evidence of
over-training.

feb89 oct89 feb91 sep92 overall

MLE 6.99 7.68 7.49 11.61 8.44
FD iter 4 5.51 6.07 6.52 8.73 6.73

Table 1: % word error for single Gaussian RM system with MLE
and FD training.

Table 1 and Table 2 show the results of FD on the single and 6
Gaussian per state systems. The single Gaussian system shows an



feb89 oct89 feb91 sep92 overall

MLE 2.77 4.02 3.30 6.29 4.10
FD iter 4 2.81 3.39 2.90 5.94 3.76

Table 2: % word error for 6 Gaussian per state RM system with
MLE and FD training

overall decrease in WER of 20.3% after 4 iterations of FD and the
6 mixture system an 8.3% reduction.

4.2. NAB Experiments

The HMMs used in these experiments were based on the HMM-1
set described in [6]. This decision-tree state-clustered cross-word
triphone set of HMMs had 6399 speech states and was trained us-
ing MLE on the Wall Street Journal SI-284 training set (about 66
hours of data). Here a version of those models trained on cep-
stra derived from Mel frequency perceptual linear prediction (MF-
PLP) analysis was used. Versions of these models with different
numbers of 1,2,4 and 12 mixture components per state were cre-
ated using MLE, and then for each of these 4 iterations of FD train-
ing applied.

The models were tested on the 1994 DARPA Hub-1 develop-
ment and evaluation test sets, which are denoted csrnab1 dt and
csrnab1 et, using a trigram language model estimated from the
1994 NAB 227 million word text corpus. The same underlying
HMM set (but trained using MFCCs) was used in [5] to evaluate
the performance of lattice-based MMIE so this serves as a useful
point of comparison.

Num mix csrnab1 dt csrnab1 et % WER
Comps MLE FD MLE FD reduction

1 13.64 11.95 15.64 14.32 10.4
2 11.84 10.58 13.19 12.04 9.7
4 10.67 9.77 11.25 10.84 6.0

12 9.30 8.99 9.96 9.85 2.2

Table 3: % word error rates on NAB test sets

Table 3 gives the performance of the FD on NAB and shows
that the reduction in WER decreases as model complexity increases.
The single and two Gaussian per state systems have a 10% relative
word error reduction while the 12 mixture component system has
a reduction in error of just 2%. However it should be noted that
the FD models gave improvements over MLE in all cases.

Num Mix csrnab1 dt csrnab1 et
Comps FD MMIE FD MMIE

2 10.6 8.4 8.7 8.8
12 3.3 0.6 1.1 -1.2

Table 4: Comparison of FD and MMIE (from [5]) systems giving
% word error reductions relative to MLE

Table 4 compares the NAB reductions in word error for the
comparable tests tests reported in [5]. The results are encouraging,
with FD giving more improvement than MMIE in most cases.

4.3. Computational Cost of FD

For the experiments above the computational cost of FD is very
important. As previously discussed, the most computationally in-
tensive part of FD training is calculating the occupation probabil-
ities and finding the most likely Gaussians in the system. Using
the Roadmap algorithm, calculation of the these denominator oc-
cupancies for FD took about five times as long as for the numer-
ator, meaning that this implementation of FD is about five times
slower than conventional MLE training. The efficient lattice-based
MMIE training procedure discussed in [5] is 15-20 times slower
than MLE (ignoring the time to create the initial word lattices).
Therefore it appears that FD is about three times faster than the
lattice based MMIE procedure.

5. CONCLUSIONS

The paper has reported an implementation of FD training, and in-
troduced the Roadmap algorithm which finds the set of most likely
Gaussians in the system and is key to the efficient implementation
of FD with large HMM sets. A distance measure for Gaussians
based on the notion of overlap was introduced and shown to be
very effective.

Experimental results show that FD gives considerable reduc-
tions in word error for simple models and also gives useful in-
creases in accuracy for more more complex speech models with
more mixture components. The improvements are similar to those
previously reported for MMIE but the FD implementation is con-
siderably more computationally efficient.
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