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ABSTRACT

Although research has previously been done on multilingual speech
recognition, it has been found to be very difficult to improve over
separately trained systems. The usual approach has been to use some
kind of “universal phone set” that covers multiple languages. We
report experiments on a different approach to multilingual speech
recognition, in which the phone sets are entirely distinct but the
model has parameters not tied to specific states that are shared across
languages. We use a model called a “Subspace Gaussian Mixture
Model” where states’ distributions are Gaussian Mixture Models
with a common structure, constrained to lie in a subspace of the to-
tal parameter space. The parameters that define this subspace can
be shared across languages. We obtain substantial WER improve-
ments with this approach, especially with very small amounts of in-
language training data.

Index Terms— Large vocabulary speech recognition, Subspace
Gaussian mixture model, Multilingual acoustic modeling

1. INTRODUCTION

Nowadays speech technology is mature enough to be useful for many
practical applications. Its good performance, however, depends on
availability of adequate training resources. There are many appli-
cations, where resources for the domain or language of interest are
very limited. For example, in intelligence applications, it is often
impossible to collect necessary speech resources in advance as it is
hard to predict which languages become the next ones of interest.
Limited resources were also at the center of interest of our team at
the Johns Hopkins University 2009 summer workshop, titled “Low
Development Cost, High Quality Speech Recognition for New Lan-
guages and Domains”. Besides the work on learning lexicons, which
is described in separate paper [1], this team explored a new approach
to acoustic modeling for automatic speech recognition (ASR) based
on Subspace Gaussian Mixture Models (SGMM) [2].

This work was conducted at the Johns Hopkins University Summer
Workshop which was (partially) supported by National Science Foundation
Grant Number IIS-0833652, with supplemental funding from Google Re-
search, DARPA’s GALE program and the Johns Hopkins University Human
Language Technology Center of Excellence. BUT researchers were partially
supported by Czech MPO project No. FR-TI1/034. Thanks to CLSP staff
and faculty, to Tomas Kašpárek for system support, to Patrick Nguyen for
introducing the participants, to Mark Gales for advice and HTK help, and to
Jan Černocký for proofreading and useful comments.

In conventional acoustic models, the distribution of each (pos-
sibly tied) HMM state is represented by relatively large number of
parameters completely defining a Gaussian Mixture Model (GMM).
The SGMM also uses mixtures of Gaussians as the underlying state
distribution, but the high-dimensional super-vector of all the GMM
parameters is constrained to live in a relatively low dimensional sub-
space, which is common to all the states. This constraint is justified
by high correlation between states’ distributions, since the variety
of distributions corresponding to the sounds that the human articu-
latory tract is able to produce is quite limited, and the number of
tied states can be quite large. The majority of the parameters in an
SGMM are typically shared across the states; these parameters are
those defining a subspace of GMM parameters. Distributions of the
individual states are then described using relatively low-dimensional
vectors representing co-ordinates in the subspace. Therefore, the
SGMM allows for a much more compact representation of HMM
state distributions, which results in more robust estimation of pa-
rameters and improved performance – especially when the amount
of available training data is limited.

In this paper, we concentrate on a set of ”multilingual” exper-
iments carried out during the JHU 2009 summer workshop, where
the aim was to improve recognition performance for one language
by also training the shared parameters of the acoustic model on data
from other languages. In the past, other attempts to benefit from
availability of data from different languages have been made. The
usual approach has been to define a common set of universal phone
models with appropriate parameter sharing [3] and train it on data
from many languages with eventual adaptation on the data from the
language of interest. However, mixed results were reported when
using this rather complicated procedure. Also, use of the universal
phone models often leads to degradation in performance for the
resource-rich languages. However, we note the recent work reported
in [4] which uses a similar experimental setup to ours and uses
cross-lingual training of MLP-based multi-stream posterior features
to leverage out-of-language data.

SGMMs can be very naturally trained in a multilingual fashion.
The HMM states are defined and the state-specific SGMM parame-
ters are trained as in the case of individual language-specific mod-
els. The common SGMM parameters are, however, shared across the
HMM states from all the languages used. Our experiments were on
Spanish, German and English, and we were able to show substantial
improvements over building individual systems.

In Section 2, we describe the Subspace Gaussian Mixture



Model; in Section 3 we show visually the kind of information
the subspace seems to be learning; in Section 4 we describe our ex-
perimental setup and results and, in Section 5, we give conclusions.

2. SUBSPACE GAUSSIAN MIXTURE MODEL

In the Subspace Gaussian Mixture Model (SGMM), the distribution
of features in HMM state j is a mixture of Gaussians:

p(x|j) =

IX
i=1

wjiN (x; µji,Σi), (1)

where the same number of mixture components I (typically a few
hundreds) is used for all the states. The covariances Σi are shared
across states. Unlike in a conventional GMM, the mean vectors µji

and mixture weights wji are not directly estimated as parameters of
the model. Instead, a particular state j is associated with a vector
vj which determines the means and weights. The mean vectors are
derived as:

µji = Mivj , (2)

where the parameters Mi are shared across state distributions and
define the subspace in which the GMM mean vectors can live. The
matrices Mi will typically comprise the majority of the parameters
in an SGMM model. The mixture component weights are derived
from the vector vj using a log-linear model

wji =
expwT

i vjPI
i′=1 expwT

i′vj

, (3)

with a globally shared parameter wi determining the mapping. This
model is of the same form as that used in multi-class linear logistic
regression.

To find the right balance between the amounts of shared and
state-specific parameters, we have adopted the concept of substates.
Here, the distribution of a state can be represented by more than
one vector vjm, where m is the substate index. Each vector vjm

determines a ”substate” distribution, which is again a mixture of
Gaussians. The state distribution is then a mixture of the substate
distributions defined as follows:

p(x|j) =

MjX
m=1

cjm

IX
i=1

wjmiN (x; µjmi,Σi) (4)

µjmi = Mivjm (5)

wjmi =
expwT

i vjmPI
i′=1 expwT

i′vjm

, (6)

where the substate mixture weights cjm are additional state-specific
parameters. In our experiments, we allocate the number of mixture
components Mj proportional to a small power of the data count for
a state j (e.g. 0.2).

For more discussion and results relating to SGMMs as applied
to a single language and for results relating to speaker adaptation,
see [5] and [6]. Our experiments reported here did not use speaker
adaptation. A more detailed treatment, including derivations and
complete estimation formulae, can be found in [2].

3. INTERPRETING SUBSPACE DIMENSIONS

The hope with this type of modeling technique is that the vectors
vjm will correspond to some kind of meaningful representation of

Fig. 1. Most significant dimensions in SGMM space

Fig. 2. IPA phone chart, converted to PRONLEX format

speech sounds. We decided to see if we could verify this by plot-
ting these vectors for different phonetic classes. We did this for a
system without substates. We display the vectors vjm by working
out the two most important directions of variation and plotting those
(see [2, Appendix K] for the computation). Figure 1 is a plot of the
vector vj in the central states of the various tied 3-state HMMs for
various different vowels, with each state represented by a single dot
and the dots corresponding to each vowel in a different color (the
colors will not be visible in black and white, but we have placed the
corresponding label at the center of each cluster to indicate where
they are). The labels correspond to the PRONLEX dictionary for-
mat. Figure 2 consists of the same set of vowels extracted from a
standard IPA vowel chart 1 and converted to the same PRONLEX
notation. The locations in the subspace display almost the same pat-
tern as the IPA vowel chart. This suggests that the subspace model
is learning something meaningful.

4. EXPERIMENTAL SETUP AND RESULTS

4.1. Baseline systems

In the following experiments, systems are trained and results are re-
ported for three languages, namely English, German and Spanish.
The corresponding parts of Callhome corpora [7, 8, 9] are used for
acoustic model training and to test the recognition performance. The
amounts of data used for training and test are sumarized in Table 1.

1http://www.langsci.ucl.ac.uk/ipa/vowels.html



Table 1. Amounts of data for acoustic model training and testing

Training Test
hours conversations hours conversations

English 15.1 80 1.8 20
Spanish 16.5 80 2.0 20
German 14.7 80 3.7 20

Table 2. Word recognition performance for English

#Sub-
states

#Parameters WER [%]
Shared State-

specific
Baseline n/a 0 2427k 52.5
SGMM 1921 952k 77k 48.9
SGMM 12k 952k 492k 47.5
+multilingual 12k 952k 492k 46.4
+multilingual 53k 952k 2173k 44.9

The language-specific baseline recognition systems are based
on conventional 3-state left-to-right HMM triphone models. Deci-
sion tree based clustering is used to obtain 1921, 1696 and 1584
tied states for English, German and Spanish respectively. We use
16 Gaussians per state. The tree sizes and numbers of Gaussians
per state were tuned to optimize unadapted WER. The features are
13 PLP coefficients [10] including energy, plus ∆ and ∆∆ and per-
speaker mean and variance normalization.

For English, the language model was a trigram with a word-list
of 61k words obtained by interpolating individual models trained
on English CallHome, Switchboard [11], GigaWord [12] and some
web data. The web data is obtained by crawling the web for sen-
tences containing high frequency bigrams and trigrams occurring in
the training text of the Callhome corpus. The Spanish trigram LM
used a word-list of 45k words and was trained on the Spanish Call-
Home transcripts and web data. We did not do word decoding on
German because the German CallHome has no development data to
estimate LM interpolation weights, and because of lack of time to
develop an alternative approach.

The results obtained with language-specific baseline systems
can be found in the first line of Table 2 for English and in the
first line of Table 3 for Spanish. Although 54.7% word error rate
(WER) for English and 68.9% WER for Spanish may seem to be
rather high, these results are in agreement with those obtained by
other sites [13, 14] with ML-trained unadapted systems on this very
challenging task.

We also report recognition performance for all three languages
in terms of phone error rate. Phone reference transcripts were
obtained using a forced alignment performed with our language-

Table 3. Word recognition performance for Spanish

#Sub-
states

#Parameters WER [%]
Shared State-

specific
Baseline n/a 0 2000k 68.3
SGMM 1582 952k 63k 65.9
SGMM 22k 952k 902k 65.2
+multilingual 22k 952k 902k 64.6
+multilingual 40k 952k 1640k 64.4

Table 4. Phoneme error rate

English Spanish German
#phones

42 27 45
Baseline 54.9 46.2 56.3
SGMM 51.7 44.0 53.4
+multilingual 50.2 43.5 52.4

specific baseline systems. For the phone decoding, language-specific
phone bigram language models were used. These “phonotactic”
models were trained on phone transcripts of acoustic training data,
which were again obtained using forced alignment. Phone error
rates for all three languages obtained with baseline systems are
reported in the first line of Table 4.

4.2. Subspace Gaussian Mixture Model

In the first set of experiments with SGMMs, language-specific mod-
els are built with both shared and state-specific parameters trained
only using data from the corresponding language. Except for the
acoustice model, the systems are the same as the baseline (i.e. we
use the same features, state tying, language models, etc.) In these
experiments, we use an SGMM configuration with I = 400 mix-
ture components and 40 dimensional state-specific vector vj , which
results in 952000 shared parameters. This configuration was found
to be close to the optimum. The second line in Table 2 shows re-
sults for an English SGMM based system, where each of 1921 tied
states is described using only a single state-specific vector vj . In
this case, the overall number of state-specific parameters is 76840,
which is only fraction of the number of shared parameters. With this
system, we obtain 2.2% absolute improvement in WER compared to
the baseline. As can be seen on the next line in the table, an addi-
tional 2.8% absolute improvement can be obtained from increasing
the number of substates as discussed in section 2. Note that, for En-
glish, the overall number of the parameters in this model is still only
about half the baseline.

4.3. Multilingual experiments

In the previous experiments, each language-specific system was
trained using quite a limited amount of acoustic data. Assuming
that the simple linear constraints put on state distributions by shared
SGMM parameters are not very language-specific (i.e. correspond
to the constraints given by human articulatory tract rather than defin-
ing subspace of sounds specific to a language), we can attempt to
increase the robustness of model estimation by training the shared
parameters using larger amounts of data from multiple languages. In
the following experiments, state-specific SGMM parameters are still
associated with the same tied states specific to each language. How-
ever, the shared SGMM parameters are now shared across states
from all three languages and are effectively trained using all the
training data available for these languages (46.3 hours).

The results obtained with such configuration are those with the
tag multilingual reported in Table 2 for English and Table 3 for Span-
ish. Using the same number of substates that was optimal for sys-
tems trained on language-specific data (12k and 22k substates for
English and Spanish respectively), we observe WER reduction for
both English and Spanish when training the shared parameters in the
multilingual fashion. Additional performance gains are observed for
both languages when increasing the number of substates from 12k
to 53k for English and from 22k to 40k for Spanish. Although only



Table 5. Results for English system trained using only one hour of
English data.

Shared parameters WER [%]trained on
Baseline n/a 70.5

SGMM
1h English 67.6

Spanish + German 59.8
+1h English 59.6

the shared SGMM parameters are effectively trained using the in-
creased amount of training data, the more robust estimates of these
parameters allow us to benefit from further increasing the number
of state-specific parameters. However, we did not see any benefit
from increasing the number of the shared parameters by doubling the
number of Gaussian components in SGMM model. The advantage
of multilingual training can also be seen from the phone recognition
results in Table 4, where the phone error rates for German are also
reported.

4.4. Acoustic modeling for languages with very limited re-
sources

In the last set of experiments (Table 5), we investigate the possibility
of building acoustic models for an extreme case, where only 1 hour
of conversational speech is available for the language of interest.
The first line in the table shows the baseline result obtained with
a conventional acoustic model trained only on one hour of English.
For this purpose, segments from Callhome English were randomly
selected to contain speech from all speakers in the training part of the
database. After tuning the model size, the optimal performance of
70.5% WER was obtained with only 500 tied states and 4 Gaussian
components per state.

With an SGMM model (second line), the WER decreases to
67.6%. The SGMM configuration used in this case is: 1000 tied
states, I = 400 mixture components, single 20 dimensional vector
vj per state (no substates).

In the next experiment (third line), we first train the system on
16.5h of Spanish and 14.7h German in the multilingual fashion as
described in the previous section. From this system, only the SGMM
shared parameters are retained and are kept fixed while training the
state-specific parameters on one hour of English. In this case, the
SGMM configuration is: 1500 tied states, I = 400 mixture compo-
nents, single 40 dimensional vector vj per state.

The last result (fourth line) was obtained using exactly the same
configuration and training procedure with the only exception that,
in the first step, the SGMM shared parameters were trained also on
the one hour of English. Adding this small amount of English data
gives only a small improvement. The total improvement versus the
conventional baseline is very large (10.9% absolute).

5. CONCLUSIONS

We have reported experiments with the Subspace Gaussian Mixture
Model (SGMM), a new kind of acoustic model that uses Gaussian
Mixture Models (GMMs) with the parameter space constrained to a
subspace of the total parameter space. We have reported experiments
on a multilingual setup where we have a limited amount of training
data for each language (about 10 hours). We showed that we could
get improvements from jointly training the shared parameters of the

model on all languages. We also showed that when the amount of
training data for the target language is extremely limited (1 hour),
we can get an extremely large WER reduction of 10.9% absolute
by using data from other languages to train the shared parameters.
This suggests that the SGMM shared parameters are to large extent
independent of the language as the parameters learned on resourceful
languages can be successfully reused to improve performance for a
language with a limited resources.
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