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ABSTRACT 

The universal background model (UBM) is an effective framework 
widely used in speaker recognition.  But so far it has received little 
attention from the speech recognition field.  In this work, we make 
a first attempt to apply the UBM to acoustic modeling in ASR.  
We propose a tree-based parameter estimation technique for 
UBMs, and describe a set of smoothing and pruning methods to 
facilitate learning.  The proposed UBM approach is benchmarked 
on a state-of-the-art large-vocabulary continuous speech recogni-
tion platform on a broadcast transcription task.  Preliminary ex-
periments reported in this paper already show very exciting results. 

Index Terms – UBM, universal background model, speech recog-
nition, acoustic modeling. 

1.  INTRODUCTION 

The universal background model (UBM) [1] is an effective frame-
work that has found great success in speaker recognition.  Concep-
tually, it is a large mixture of Gaussians that covers all speech, and 
in the context of speaker recognition, it is adapted to each speaker 
using a maximum a posteriori (MAP) scheme.  

The UBM so far has received little attention from the auto-
matic speech recognition (ASR) field.  In this paper, we make a 
first attempt to apply UBM to acoustic modeling in ASR, and 
demonstrate substantial improvements at the maximum likelihood 
(ML) level.  The basic idea is to adapt the UBM to each context-
dependent phone rather than to each speaker.  The context-
dependent phones are not an unstructured collection of phones but 
are related via a tree structure, hence we devise a set of smoothing 
methods that can utilize this structure.  Training is done through 
multiple iterations of EM [2] rather than just one as in [1].  Fur-
thermore, in our best-performing system, a separate semi-tied co-
variance (STC) transform [3] is applied for each Gaussian in the 
UBM.  One challenge in UBM-based speech recognition is the 
very large size of the resulting models.  An entropy based pruning 
method similar to [5] is used to address the problem.  The results 
in this paper should be considered preliminary, as we have not had 
time to explore the many design choices involved. 

The remainder of this paper is organized as follows.  In Sec-
tion 2, we review the baseline UBM learning algorithm.  The pro-
posed tree-based parameter estimation technique is described in 
Section 3.  Section 4 presents the experimental results, followed by 
conclusions in Section 5. 

2. UNIVERSAL BACKGROUND MODELS 

The UBM is a Gaussian Mixture Model (GMM) whose parameters 
consist of K weights kw , means kμ  and (diagonal) variances kΣ , 
which in a speaker identification context are MAP adapted to each 
speaker’s data to create a GMM for that speaker. In the speech 
recognition context, let us consider that the speech is already split 
up into many speech classes Jj L1=  based on the tree-clustered 
context dependent phones, and our reference transcriptions have 
been Viterbi-aligned given some previously existing models, so 
that we have (zero-one) phone posteriors, )(tjγ , so we can treat 
the set of frames for which 1)( =tjγ for some j as we would the 
data from a particular speaker.   

It is helpful to consider a single iteration of standard EM up-
date starting from the UBM.  Define the Gaussian-specific poste-
rior, 
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Define the count statistics )(tjkγ  and the first and second-order 
statistics jkx  and jkS as, 
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where k is the Gaussian index in the UBM.  The standard EM up-
date for the speech-class specific mean jkμ  and jkΣ  would be, 
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The MAP adaptation scheme for the means and variances corre-
sponds to adding a small number τ of statistics with mean and 
variance the same as the original Gaussian, to the statistics ob-
tained from the data:  
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Various schemes have been used for the MAP adaptation of the 
weights for speaker identification, which we will not describe here. 

If multiple iterations of EM are used as in [2], the Gaussian 
posteriors are derived from the previous iteration’s models.  So, on 
the second iteration, we define, 
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3.  TREE-BASED PARAMETER ESTIMATION 

3.1.  Global Tree 

The form of MAP adaptation applied to our models is more com-
plicated than the scheme described in the previous section.   

First we obtain a single global tree to describe all of our pho-
netic states.  The standard tree-clustering of the phones as used in 
our baseline system is a simple binary tree within each of the three 
states of each context-independent phone, where each non-leaf 
node in the tree represents a question about the acoustic context 
and each leaf node is a clustered HMM state.  There is no second 
pass of clustering the resulting nodes, which would cause problems 
with the approach described here.  We merge all of these individ-
ual trees by forming a node corresponding to each phone, with 
three children corresponding to each of the three states, and then 
forming a single parent node for all phones. 

For parameter estimation, we need smoothing methods that 
utilize this tree structure.  We will present our smoothing equations 
and describe some of the design goals used in devising these 
smoothing equations, which are loosely based on the Kneser-Ney 
equations as used for smoothing language models [4]. 

3.2.  Design Goals  

Taking and giving the same amount  
If any amount of data is taken away from a particular state for use 
in smoothing, the same amount should be given back to it.  This 
principle has various good effects.  For instance, in mean smooth-
ing, no data point matters more than any other in terms of its effect 
on the (weighted) mean of the entire model; in weight smoothing, 
it implies that the overall counts of a particular UBM Gaussian k 
tend to be preserved.  
 
Limiting behavior 
As the number of counts for any particular UBM Gaussian k in any 
particular state j becomes large, the weight and mean and variance 
value should approach the standard E-M value, regardless of the 
counts of other Gaussians within that state.  
 
Behavior within the tree  
In the mean and variance updates, if a particular leaf node in the 
tree has observations for a particular Gaussian j but belongs to a 
branch of the tree that is otherwise devoid of counts for j, the 
smoothing scheme should in essence smooth up to the closest parts 
of the tree where counts are available.  It should not have the bad 
property that an isolated count within some section of the tree can 
manage to smooth to itself and in effect not get any smoothing. 
This constraint is why in the following equations we will some-
times use hard rather than soft count cutoffs. 

3.3. Mean and Variance Smoothing 

Our smoothing method for Gaussian parameters has an adjustable 
parameter gτ (g refers to Gaussians; 20 is our default value), simi-
lar to the τ  used in standard MAP. 

The mean and variance smoothing is presented here as an op-
eration on the counts jkγ  and the first and second order statistics 

jkx  and jkS .  Let us say that we have numbered all of the nodes 
in our global clustering tree with the leaf nodes JK1  first, fol-
lowed by the non-leaf nodes up to a total JN > , and that a node 
j’s parent )( jparent  is always numbered higher than j. 

The smoothing is an operation done separately for each Gaus-
sian k in the UBM.  For a particular k, we first initialize the statis-
tics jkγ , jkx  and jkS such that the leaf nodes have the statistics 
accumulated from the data, and the non-leaf nodes initially have 
zero statistics.  Let ),( jifmove →  denote the operation of mov-
ing a count f of statistics from node i to node j (defined if fik ≥γ ),  
which is carried out by: 
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First, the data is distributed up the tree.  For each node 
11 −= Nj K , we first estimate the amount to discount, )( jd .  At 

leaf nodes ( Jj ≤ ), we use a soft rule: )/(:)( τγτγ += jkjkjd ; and 
at non-leaf nodes, we use a hard rule: ),min(:)( τγ jkjd = .  We 
then perform the operation ))(),(( jparentjjdmove → .  If at the 
top of the tree we have zero counts, we simply put some default 
statistics with zero mean and unit variance there.  This should not 
happen unless there is a problem with the initial UBM. 

We then distribute data down the tree, taking back the same 
amount of (now averaged) statistics that were previously removed: 
for 11K−= Nj , do ))(),(( jjparentjdmove → .  While smooth-
ing down the tree we refrain from removing data from the interme-
diate nodes by skipping equation (7).  This makes no difference to 
the final statistics at the leaf nodes.  The means and variances at 
the leaf nodes are then estimated using the normal formulae for 
EM, from the smoothed statistics.  For any leaf nodes that have 
zero counts, we estimate their means and variances from the statis-
tics at the closest parent node that does not have a zero count. 

Note that unlike the baseline MAP smoothing, this discount 
scheme does not ever refer to the original Gaussian parameters 

kμ and kΣ , instead smoothing back to discounted statistics from 
other speech classes. 

3.4.  Weight Smoothing 

The weight smoothing method has two τ  values, a smaller sτ  and 
a larger lτ .  Similar to the Gaussian update, the method operates 
in two phases: counts move up the tree in one and move down in 
the other.  However, instead of performing a separate operation per 
UBM Gaussian index k as in the Gaussian smoothing, here a single 
operation accounts for all the weights.   

For data preparation, we initialize the counts jkγ at the leaf 
nodes Jj K1= , and set zero counts 0=jkγ  for non-leaf nodes 

NJj K1+= .  In phase one, for each tree node Nj K1= , we 
first work out the total amount to discount from node j, 

 ∑
=

=
K

k
jksjd

1
),min()( γτ  (8) 



using the smaller of the two τ  values.  Then a proportion )( jp  is 
removed from any counts up to a maximum of the larger τ  value, 
where )( jp  is computed to achieve the desired discount )( jd : 
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and the smoothing formulae are, 
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In phase two, we go in the reverse order ,11K−= Nj  and take 
back the same amount of counts that was given up to each parent.  
Again, we do not destroy statistics as we go down the tree, 
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Finally, using the smoothed counts we compute the weights in the 
normal way, 
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3.5.  Gaussian Pruning  

Without pruning, the resulting models would be extremely large.  
We use the global tree mentioned above to prune the Gaussian 
parameters in a similar way to the entropy-based pruning of lan-
guage models [4], by attempting to minimize the loss in average 
likelihood of the data given the pruned model.  The method is 
parameterized by a penalty p (e.g. 10-7), the maximum loss in like-
lihood allowable to delete one Gaussian.  The pruning algorithm 
operates for each UBM Gaussian k separately.  First, using the 
smoothing methods above we compute jkμ , jkΣ ,and jkw  for all  

Jj K1= ; and we also compute occupation probabilities jp for all 
the speech states j   using observation counts. 

As in the smoothing algorithms, we have counts jkγ and sta-
tistics jkx and jkS associated with each node in the tree. We ini-
tialize these to zero for the non-leaf nodes NJj K1+= , and for 
the leaf nodes Jj K1= , 
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This algorithm relies on the notion of moving statistics around the 
tree, much as in the smoothing algorithms in the previous sections.  
We use the likelihood penalty incurred by combing the statistics 
from two nodes 1j and 2j ; this is a positive number which we 
compute as follows:  
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The pruning algorithm is iterative, as follows (for a particular k):  
(1) Until convergence is reached: a. For each non-leaf node j that 
has zero count jkλ  and has more than one child with nonzero 
count, Move the statistics of the child with the smallest count up to 
the parent.  b. For each non-leaf node, work out the nonzero child 
with the smallest penalty for combining with its parent.  If this 
penalty is smaller than p, combine the child with the parent by 
moving the child’s statistics up to the parent.  (2) Until conver-
gence is reached: For any parent node that has exactly one child 
with zero count, move the parent’s statistics down to the child.  (3) 
Finally: For all nodes with nonzero statistics, turn the statistics 
back into Gaussian parameters: 
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This is a greedy algorithm which may not be optimal.  We use the 
pruned parameters by going up the tree from a leaf node until we 
find estimated parameters, and using those. 

To estimate the relative importance of the smoothing and 
pruning steps, we computed the likelihood loss due to each com-
pared to a normal EM update.  A small variance floor was used in 
the EM baseline for the Gaussian update to avoid infinities due to 
single counts.  The loss accrued from Gaussian smoothing, weight 
smoothing, and Gaussian pruning was (in natural log) 0.17, 0.004, 
and 0.06, respectively.  This indicates that the smoothed weights 
are very close to their EM values, thus any adjustment to the 
weight smoothing formulae is not likely to have much effect. 

The UBM structure gives us a convenient way to quickly 
evaluate the resulting Gaussian mixtures by using a subset of UBM 
indices k.  On each frame we first evaluate all the Gaussians in the 
original UBM and pick the top n Gaussians, e.g. for n = 4; we take 
the union of this, and all Gaussians within a certain likelihood 
threshold from the top, which threshold is set to 4 also.  The opti-
mal parameter settings have not been investigated. 

3.6.  Semi-tied Covariance 

Semi-tied covariance (STC) is used in our UBM implementation.  
A different STC class is used for each UBM Gaussian k. The STC 
computation is standard and not specific to the UBM framework, 
but the UBM framework does provide a convenient way to define 
the STC classes.  In our experiments, the STC estimation is carried 
out on the second and fourth iterations of update.  Note that the 
semi-tied covariance is not applied to the original UBM which is 
only used to pick the top Gaussian indexes on each frame for prun-
ing, as described above.  Because only a small number of Gaussian 
indexes are used, the semi-tied covariance computation is efficient 
since we only have to transform the features separately for each of 
those indexes.  However we cannot claim that there is a particu-
larly favorable combination between multiple STC classes and 
UBMs from a word error rate point of view since the improve-
ments we report from multiple STC classes are similar to those 
reported in [7] in a normal system.   

STC introduces additional complications for fMLLR and 
MLLR adaptation.  In principle, we could use the technique we 
previously introduced in [5] for full covariance adaptation.  How-
ever, this would require too much memory in the UBM case.   For 
simplicity, in our speaker-adapted UBM experiments, the fMLLR 



and MLLR adaptation matrices are derived from a baseline system 
using intermediate transcriptions generated from an un-adapted 
UBM-based decoding.  This was done whether or not the UBM- 
based model had semi-tied covariance. 

4.  EXPERIMENTS 

4.1.  Experimental Setup 

The UBM is implemented in a variant of the IBM Mandarin 
broadcast transcription system [6].   

The acoustic models are continuous mixture density HMMs 
with context-dependent states conditioned on cross-word quin-
phone context, built with maximum likelihood training on 1,321 
hours of broadcast news and broadcast conversation speech re-
leased by LDC for the DARPA GALE program.  The input audio 
is sampled at 16 KHz and coded using 13-dememsional PLP fea-
tures with a 25ms window and 10ms frame-shift; nine consecutive 
frames are spliced and projected to 40 dimensions using LDA and 
maximum likelihood linear transform (MLLT).  Vocal tract length 
normalization (VTLN) is applied.  The systems have 15K states; 
the baseline fMLLR build (SAT-trained) system had 500K Gaus-
sians which was our normal setup but our VTLN only baseline had 
1M Gaussians which was about 0.8% better than with 500K Gaus-
sians.  The UBM based systems have the same number of states 
and K=1000, and after pruning at the threshold of 10-7 have about 
the same number of parameters as a system with 2M Gaussians.  
We smooth with 5.3,5.2,20 === lsg τττ .  The UBMs were ini-
tialized by k-means likelihood-based clustering of the Gaussians in 
a baseline model, followed by 1 iteration of E-M on the data.  
UBM-based training was for 7 iterations, iterations 2 and 4 being 
devoted to STC estimation.  

The language model is built by interpolating 20 back-off 4-
gram models using modified Kneser-Ney smoothing.  The interpo-
lation weights are chosen to optimize the perplexity of a 364K 
held-out set.  In total, 5GB of text data is used in training.  The 
final language model has 6.1M n-grams and 107k words. Recogni-
tion experiments were carried out on the dev’07 test set defined by 
the GALE consortium.  The set is composed of 2 hours and 32 
minutes of Mandarin broadcast speech collected from various TV 
stations in mainland China, Taiwan, and Hong Kong.  There are 
44.6K characters in the reference. 

4.2.  Experimental Results 

The recognition results in character error rate (CER) are shown in 
Table 1 and Fig. 1.  At the VTLN level we got 1.3% absolute im-
provement which was versus an unusually large system; at the 
fMLLR level we got 1.4% absolute improvement.  Probably the 
“fairest” comparison in the table is between 17.9% (baseline) and 

17.5% (UBM) at the VTLN level, which is without STC and where 
the UBM system is only 2 times bigger than the baseline (we do 
not believe that a larger baseline would give much improvement).   

5.  CONCLUSIONS 

In this work, we make a first attempt to apply the UBM to acoustic 
modeling in ASR.  We propose a tree-based parameter estimation 
technique for UBMs, and describe a set of smoothing and pruning 
methods to facilitate learning.  The proposed UBM based approach 
is benchmarked on a state-of-the-art large-vocabulary continuous 
speech recognition platform on a broadcast transcription task.  Our 
results at the ML level are substantially better than our previous 
state-of-the art system.  It is possible that most or all of the im-
provement could have been obtained using a combination of mul-
tiple STC classes and more parameters, but nevertheless we be-
lieve that the extra structure of the UBM based approach makes it 
attractive as a starting point for other improvements; it is also very 
fast to train and test.   
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Fig. 1.  UBM-based systems consistently outperform the non-
UBM baseline at both the VTLN and fMLLR levels. 
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UBM w/o STC,  VTLN Build

UBM w/  STC,  VTLN Build

UBM w/  STC, fMLLR Build

Baseline,     VTLN Build

Baseline,    fMLLR Build

Table 1.  On dev’07, UBM gives significant improvement in 
CER(%) compared with the baseline system.   

Systems Baseline UBM UBM w/ STC 
VTLN 17.9 17.5 16.6 

+fMLLR 16.6 -- 15.0 
+MLLR 16.2 -- 14.8 

 


