Speech REcognition

- a practical guide
Lecture 2

Hidden Markov Models
First, a detour...
Nazi Germany, 1939
The Enigma

- Enigma was one of many such machines
- Encrypted text messages sent by radio
- Substituted letters in an order-dependent way (a disk rotated with each letter, changing the pattern of substitutions)
- Had a large number of settings controlled by rotors
- Recipient had to know the rotor settings
Rotor settings were changed daily (the same everywhere).

The Allies could use computers to try out each combination of rotor settings.

For the correct combination, the decrypted messages would “make sense”
Colossus
the first programmable computer
(Bletchley Park, England)
Models of text

A computer was used to try out the various combinations fast.*

But wait!

A computer cannot tell whether message makes sense

Need to have a model of (German) text

This model will assign a higher score to sequences that look like “real text”

*Disclaimer: this is all a gross oversimplification of what really happened.
Simplest model

Assume letters produced “independently” (i.i.d. = identically and independently distributed).

Just use letter frequencies, e.g. “e” more common.

For each letter, $P(\text{letter})$ is relative frequency.

$P(\text{sentence})$ is product over letters of $P(\text{letter})$.
That model is sufficient to break simple codes (e.g. a rotation of the letters).

Enigma machine was not a simple substitution or rotation cipher.

Many different rotor settings would produce plausible letter frequencies

- e.g. swapping 2 letters of similar frequency
Markov Chain

A Markov Chain is a model of probabilities of sequences of symbols.

In 1st order Markov chain, $p(\text{symbol})$ depends only on previous symbol.

E.g. $p(\text{hat}) = p(h|?) \ p(a|h) \ p(t|a)$

Write $p(h|?)$ because we’re not addressing start/end effects right now.

Would work out a table of probabilities from previous telegrams.
Hidden Markov Model (HMM)

- A model of the probability of a sequence.
- At each time instant, model is in some “hidden” state.
- Matrix of “emission probabilities”: #states by #symbols
- Matrix of “transition probabilities”: #states by #states
- Note: invented by US govt. researchers, probably for some code-breaking stuff (but the exact use has not been made public.)
HMMs

- Computing $p(\text{sequence} \mid \text{model})$ involves summing over exponentially many state sequences.
- Can be done fast using a dynamic programming recursion.
- Training the model parameters aims to maximize train-data likelihood.
- Not just a question of computing frequencies like for Markov chain.
- You have to work out the hidden state sequences (well, a distribution over them).
HMMs: important algorithms

- Forward-backward algorithm
 - Recursion to compute state occupation probs.
 - Used during model training.
 - This is a class of algorithms for iteratively maximizing likelihood.

- Viterbi algorithm
 - Finds most likely sequence of HMM states given a symbol sequence.
Old HMM-based speech-reco used to work like this:

- Use Vector Quantization (VQ) to map each speech feature to one symbol (out of typically around 256).
- Each phone has a 3-state HMM with a left-to-right structure as above.
The model for a sentence is a concatenation of the models for its phones.

You don’t need phone time alignment to train.

The forward-backward algorithm just finds the right alignment itself, after many iterations.

This relies on there being enough training sentences (and nice enough data)
Vector Quantization was done by training a Gaussian Mixture Model (GMM) and using the top-scoring index.

After some time people switched to a “soft” Vector Quantization: sum over the index, rather than take the max.

Eventually the Gaussians were made specific to the HMM-states.

This is a “continuous” HMM, not discrete: the states emit a continuous feature vector, not a discrete symbol.
Things you should know

The following are very fundamental things that you should learn if you don’t know already:

- Markov Chain
- Hidden Markov Model
- Forward-backward algorithm
- Viterbi algorithm
- E-M for mixture of Gaussians
Monophone model training

Assumes you are where you left off last week

See kaldi.sf.net for slides

Note: “monophone” is to distinguish from phonetic-context-dependent HMMs “triphones”

```
$ cd ~/kaldi-trunk/egs/rm/s3
$ ## these commands are in run.sh
$ . path.sh  ## set up your path-- will be needed later.
$ scripts/subset_data_dir.sh data/train 1000 data/train.1k
$ steps/train_mono.sh data/train.1k data/lang exp/mono
$ local/decode.sh --mono steps/decode_deltas.sh exp/mono/decode
```
Monophone model training

$ cd ~/kaldi-trunk/egs/rm/s3
$ ## these commands are in run.sh
$ scripts/subset_data_dir.sh data/train 1000 data/train.1k
$ steps/train_mono.sh data/train.1k data/lang exp/mono
$ local/decode.sh --mono steps/decode_deltas.sh exp/mono/decode

- Use a subset of data since waste of time to use all of it (so few parameters to train)

- Suggested exercise: try with different amounts of data and see how WER changes

- Does WER change smoothly?
Monophone model training

Next we’ll look at how the training script works.

Output is in exp/mono

Will look at log files to show you the commands the script actually runs.
Cepstral normalization

For each speaker, compute statistics to normalize the means and variances of the cepstral features.

Just count, and (sum, sum-squared) for each dim.

Statistics are in binary format

```bash
$ cat exp/mono/cmvn.log
compute-cmvn-stats --spk2utt=ark:data/train.1k/spk2utt scp:data/train.1k/feats.scp ark:exp/mono/cmvn.ark
```
Viewing CMVN stats

```bash
$ copy-matrix ark:exp/mono/cmvn.ark ark,t:- | head
copy-matrix ark:exp/mono/cmvn.ark ark,t:-
  adg0  [
    202805.7  -45171.13  -25113.25  -32178.11  -64940.17  -59834.14  -53859.89
    -25581.98  -38369.97  -35770.74  -34123.73  -40811.7  -17615.15  3120.1370877e+07
    1.370877e+07  1926569  693237.5  1436362  2282034  1924576  1983340  791023.9
    1075897  947114.2  995890.7  1152457  501246.2  0 ]
  ahh0  [
    243559.7  -49834.79  -45551.43  -32294.71  -31345.15  -69359.74  -21432.35
    -62158.46  -2514.336  -19708.29  -40365.65  37920.28  -36189.33  3720.1676417e+07
    1.676417e+07  2100356  1245457  1481856  963323.5  2106689  816228.5  2149422
    596726.6  830598.1  1141586  1077821  1064480  0 ]
```

- Part highlighted in yellow went to stderr
- All logging goes to stderr (including echoing command line).
- This is standard archive of matrices.
Model initialization

```
$ head exp/mono/init.log
gmm-init-mono ' --train-feats=ark:apply-cmvn --norm-vars=false --
utt2spk=ark:data/train.1k/utt2spk ark:exp/mono/cmvn.ark scp:data/train.1k/
feats.scp ark:- | add-deltas ark:- ark:- | subset-feats --n=10 ark:-
ark:- |' data/lang/topo 39 exp/mono/0.mdl exp/mono/tree
```

- (ignore part in gray; used to get plausible means and variances)

- Input: topology file data/lang/topo, and dim (39)

- Outputs: model “0.mdl” and “tree”

- Tree is phonetic-context decision tree-- doesn’t have any splits in monophone case.
whole set of trees represented as one tree

ask first about central phone.
Viewing topology file

Specifies 3-state left-to-right HMM, and default transition probs (before training)

Separate topology for silence (5 states, more transitions)
Compiling training graphs

- Compiles FSTs, one for each train utterance
- Encode HMM structure for that training utterance
- We precompile them because otherwise this would dominate training time
Viewing training graphs

Archive format is: (utt-id graph utt-id graph...)

Graph format is:

- from-state to-state input-symbol output-symbol cost

Costs include pronunciation probs, but for training graphs, not transition probs (added later).
Symbols in graphs

In graphs for training and testing...

Output symbols are words (look up in words.txt)

In the traditional recipe, input symbols would be p.d.f.’s (so each mixture of Gaussians has a number)

This causes difficulties for training the transition probabilities and finding phone alignments etc.

In our graphs, input-symbols are “transition-ids”, which correspond roughly to arcs in context-dependent HMMs. See docs!

Can be mapped to “pdf-ids” which are fewer.
First alignment stage

- Produces alignments “equally spaced” for each utterance, accumulates 1st iteration stats.
- An alignment is a vector of ints (per utterance)
- Note: we do Viterbi training not forward-backward means we use 1-best path.
Looking at alignments

These are the alignments we got after training the model more.
Looking at alignments

The program “show-alignments” displays them in more readable format, with phones.
First update

$ cat exp/mono/update.0.log
gmm-est --min-gaussian-occupancy=3 --mix-up=250 exp/mono/0.mdl exp/mono/0.acc exp/mono/1.mdl
LOG (gmm-est:Update():transition-model.cc:374) TransitionModel::Update, objf change is 0.109912 per frame over 348500 frames; 0 probabilities floored, 0 states skipped due to insufficient data.
LOG (gmm-est:main():gmm-est.cc:101) Transition model update: average 0.109912 log-like improvement per frame over 348500 frames.
LOG (gmm-est:main():gmm-est.cc:109) GMM update: average 0.507126 objective function improvement per frame over 348500 frames.
LOG (gmm-est:SplitByCount():am-diag-gmm.cc:179) Split 146 states with target = 250, power = 0.2, perturb_factor = 0.01 and min_count = 20, split #Gauss from 146 to 250
LOG (gmm-est:main():gmm-est.cc:140) Written model to exp/mono/1.mdl

Note: Gaussians allocated proportional to small power of state occupation count (0.2 by default)
Looking at models

Model file contains transition-model object, then GMM object

Transition-model object is model-type-independent
Model building schedule

```bash
$ less steps/train_mono.sh  # snipped it a bit and expanded some variables...
x=1
while [ $x -lt 30 ]; do
  echo "Pass $x"
  if echo 1 2 3 4 5 6 7 8 9 10 12 15 20 25 | grep -w $x >/dev/null; then
    echo "Aligning data"
    gmm-align-compiled $scale_opts --beam=$beam --retry-beam=${beam*4} \ 
    $dir/$x.mdl "ark:gunzip -c $dir/graphs.fsts.gz|" "$feats" \ 
    ark,t:$dir/cur.ali 2> $dir/align.$x.log || exit 1;
  fi
  gmm-acc-stats-ali --binary=false $dir/$x.mdl "$feats" ark:$dir/cur.ali $dir/$x.acc 2> $dir/acc.$x.log || exit 1;
  gmm-est --write-occs=$dir/[$x+1].occs --mix-up=$numgauss $dir/$x.mdl $dir/$x.acc $dir/[$x+1].mdl 2> $dir/update.$x.log || exit 1;
  rm $dir/$x.mdl $dir/$x.acc $dir/$x.occs 2>/dev/null
  if [ $x -le $maxiterinc ]; then
    numgauss=${numgauss+$incgauss};  # We’ll get to 1000 Gaussians eventually
  fi
  x=${x+1}
done
```
$ less steps/train_mono.sh # snipped it a bit and expanded some variables...

x=1
while [$x -lt 30]; do
 echo "Pass $x"
 if echo 1 2 3 4 5 6 7 8 9 10 12 15 20 25 | grep -w $x >/dev/null; then
 echo "Aligning data"
 gmm-align-compiled $scale_opts --beam=$beam --retry-beam=[$(($beam*4))]
 $dir/$x.mdl "ark:gunzip -c $dir/graphs.fsts.gz" "$feats"
 ark,t:$dir/cur.ali 2> $dir/align.$x.log || exit 1;
 fi
 gmm-acc-stats-ali --binary=false $dir/$x.mdl "$feats" ark:$dir/cur.ali $dir/$x.acc 2> $dir/acc.$x.log || exit 1;
 gmm-est --write-occs=$dir/[$(($x+1)).occs --mix-up=$numgauss $dir/$x.mdl $dir/$x.acc $dir/[$(($x+1)).mdl 2> $dir/update.$x.log || exit 1;
 rm $dir/$x.mdl $dir/$x.acc $dir/$x.occs 2>/dev/null
 if [$x -le 20]; then
 numgauss=$(($numgauss+37)); # We’ll get to 1000 Gaussians eventually
 fi
 x=[$(($x+1)]
done
For monophone stage, use "delta" and "acceleration" features (add-deltas); dim now 39

Deltas computed over 5-frame window, like HTK

Shell variable $feats specifies features.
Decoding script generates lattices

These are rescored with different acoustic scales and all the WERs are printed out.

We generally quote the best one

It’s considered more proper to use a “dev set”.
Decoding script

Note: “decoding” refers to the computation where we find the best sentence given the model.

```bash
$ # the script
$ # local/decode.sh --mono steps/decode_deltas.sh exp/mono/decode
$ # calls:
$ scripts/mkgraph.sh --mono data/lang_test exp/mono exp/mono/graph
$ # then for each test set, e.g.:
$ steps/decode_deltas.sh exp/mono data/test_feb89 data/lang exp/mono/decode/feb89
```
Decoding output

Note: the sub-processes also print their own command-line arguments (explains first few lines)

This output is just for debug (also gives lattice)
Homework

- This is optional...

- Run the steps described in this lecture

- Do one of:
 - Test whether varying the subset size makes a difference
 - See if using PLP features helps (see run.sh)
 - Try different options to the “add-deltas” program (note: train and test must match)

- Email your results to dpovey1@jhu.edu
End of this lecture