
PREDICTING MULTI-CODEBOOK VECTOR QUANTIZATION INDEXES
FOR KNOWLEDGE DISTILLATION

Liyong Guo*,1, Xiaoyu Yang*,1, Quandong Wang1, Yuxiang Kong1, Zengwei Yao1, Fan Cui1,
Fangjun Kuang1, Wei Kang1, Long Lin1, Mingshuang Luo1, Piotr Żelasko2, Daniel Povey1

1 Xiaomi Corp., Beijing, China 2Meaning.Team Inc, USA
{guoliyong, xiaoyuyang6, dpovey}@xiaomi.com, pzelasko@meaning.team

ABSTRACT

Knowledge distillation (KD) is a common approach to improve
model performance in automatic speech recognition (ASR), where a
student model is trained to imitate the output behaviour of a teacher
model. However, traditional KD methods suffer from teacher la-
bel storage issue, especially when the training corpora are large.
Although on-the-fly teacher label generation tackles this issue, the
training speed is significantly slower as the teacher model has to
be evaluated every batch. In this paper, we reformulate the gen-
eration of teacher label as a codec problem. We propose a novel
Multi-codebook Vector Quantization (MVQ) approach that com-
presses teacher embeddings to codebook indexes (CI). Based on
this, a KD training framework (MVQ-KD) is proposed where a
student model predicts the CI generated from the embeddings of a
self-supervised pre-trained teacher model. Experiments on the Lib-
riSpeech clean-100 hour show that MVQ-KD framework achieves
comparable performance as traditional KD methods (l1, l2), while
requiring 256 times less storage. When the full LibriSpeech dataset
is used, MVQ-KD framework results in 13.8% and 8.2% relative
word error rate reductions (WERRs) for non -streaming transducer
on test-clean and test-other and 4.0% and 4.9% for streaming trans-
ducer. The implementation of this work is already released as a part
of the open-source project icefall1.

Index Terms— knowledge distillation, neural transducer, ASR

1. INTRODUCTION

In the field of speech processing, significant improvements have
been witnessed in self-supervised pre-training in recent years [1–
4]. After pre-training on a very large amount of unlabeled data, the
model is then fine-tuned with task-specific labeled data for down-
stream tasks such as ASR[1, 3, 4], speaker verification[4, 5], emotion
recognition[5, 6], etc.

To fully leverage the richness of unlabeled data, pre-trained
models [1, 3, 4, 7, 8] usually have a large number of parameters,
ranging from hundreds of millions to several billions.. Although
these models achieves state-of-the-art performance, they are imprac-
tical to be used in real-life scenarios due to their large model size and
footprint. To deal with this, efforts have been made to utilize pre-
trained models for improving smaller model’s performance. Knowl-
edge distillation (KD)[9], also known as teacher-student training
[10–13] is applied to transfer information from a pre-trained teacher
model to a typically-smaller student model, where the student model

* stands for equal contribution
1https://github.com/k2-fsa/icefall

learns from labels generated from the teacher. Although the stu-
dent model is typically of small size, there is an implicit problem
being unnoticed: training efficiency. In traditional teacher-student
training, the teacher labels are often float embeddings [11, 14, 15]
extracted on-the-fly, which would slow down the training if the
teacher model is an extremely large pre-trained model. In addition
to that, the maximum training batch size has to be reduced, leading
to potential performance degradation. Otherwise, one could save the
float type embeddings to disk before training and load them during
KD training. However, the training speed would be constrained
by the I/O and a huge amount of storage space is needed, making
training impractical if the training corpus is large.

Clustering or quantization is effective for representation learn-
ing [1, 3, 16, 17]. Wav2vec2.0 [1] takes vector quantization (VQ)
for clustering and the codebook vector is taken into computing con-
trastive loss. BEST-RQ [18] takes the VQ indexes as the pre-training
labels. Inspired by these and borrowing ideas of residual vector
quantization [19] and the direct-sum codebooks [20, 21], we pro-
pose a trainable Multi-codebook Vector Quantization (MVQ) which
compresses each embedding vector into a short sequence of 8-bit in-
teger codebook indexes (CI)2.

Based on MVQ, a KD framework (MVQ-KD) is proposed by
teaching a student model to predict CI generated from the embed-
dings at an intermeidate layer of a teacher model. This could solve
the computation or storage issue of traditional KD methods[22, 23].
For example, with the Hubert-Large model [3] whose dimension is
1024, it would cost 1976 gigabytes for storing 960 hours’ of float-
type teacher embeddings if 3-fold speed perturbation is used. How-
ever, only 7.72 gigabytes are needed for the corresponding CI in a
16-codebook MVQ setup, achieving a compression rate of 256. CI
can be pre-computed and stored on disk at very low cost, which im-
proves the training efficiency.

The key experimental findings of this paper are:
• MVQ-KD achieves comparable performance as using tradi-

tional l1 or l2 losses, while saving 256 times storage space,
avoiding the need of on-the-fly teacher label generation.

• The performance of MVQ-KD can be further improved with
more codebooks.

• MVQ-KD is effective both for streaming and non-streaming
transducer models.

In the rest of this paper, Sec. 2 illustrates the details of the MVQ
algorithm. Sec. 3 briefly reviews the self-supervised pre-trained Hu-
BERT model and presents the MVQ-KD framework. In Sec. 4, the
experimental setup and results are described. Finally, conclusions
are drawn in Sec. 5.

2https://github.com/k2-fsa/multi quantization

ar
X

iv
:2

21
1.

00
50

8v
1

 [
ee

ss
.A

S]
 3

1
O

ct
 2

02
2

2. TRAINABLE MULTI-CODEBOOK QUANTIZER

Consider a quantization module Q encoding vectors x ∈ <D from
a known distribution, into a fixed-size sequence of N integers 0 ≤
in < K: let i = i0, . . . , iN−1, i ∈ {0, ...,K−1}N . Q should have

i = Encode(x), (1)
x̂ = Decode(i). (2)

We are interested in encodings that are as close as possible to
optimal in an l22-error sense, i.e. that minimizes E[||x̂ − x||22]. To
keep the encoding scheme practical, we consider direct-sum code-
books, i.e. a scheme where the Decode(·) function sums over the
codebooks:

Decode(i) =

N−1∑
n=0

c(n)in
. (3)

This requiresK×N codebook centers c(n)k ∈ <D . The length of the
integer sequence N can be referred to as the number of codebooks.

When encoding using direct-sum codebooks, it is impractical to
enumerate all possible encodings as the encoding space is O(KN).
One straightforward way is to choose the codebook center sequen-
tially that reduces the residual error the most while keeping other
codebook centers unchanged. This heuristic is not guaranteed to
yield the lowest residual error as the codebook centers from different
codebooks are not jointly evaluated. Therefore, an iterative encoding
scheme is proposed to improve the aforementioned heuristic, which
efficiently searches for better encodings.

2.1. Iterative encoding scheme

Assuming the number of codebooks to beN , Encode(·) compresses
a float vector x to N CI. The encoding function has N independent
neural classifiers, which generate an intial estimate of CI. The en-
coding process Encode(·) is implemented as follows :

• Choose the initial codebook entries i as the arg-max of N
independent logistic regression classifiers.

• For e.g. 3 iterations, refine the codebook entries: i ←
Refine(x, i), each time using the refined index generated
from the previous call of Refine(·, ·).

• Return the refined indexes. They will be used as input for
Decode() and as label to train the classifiers (see Sec. 2.2)

The function Refine(x, i) is the most essential part in Encode(·).
It is given initial codebook indexes i = in, 0 ≤ n < N , and returns
possibly-improved codebook entries î = în, 0 ≤ n < N :

• For each codebook 0 ≤ n < N and each index 0 ≤ k < K,
compute modified residual x̂ − x assuming we let the n’th
codebook center be k but leaving all the other codebooks with
their initial values (the ones in i).

• For each codebook n, sort the residuals above and store in-
dexes of the J smallest residuals.

• Construct a sub-problem that has N/2 codebooks, with each
codebook being of size J2, by summing pairs of J-best code-
book centers, combining n = 0 with n = 1, n = 2 with
n = 3, and so on.

• Recurse, call Refine(·, ·) on the smaller sub-problem.

• The result î can be computed from the answer to the sub-
problem and the indexes of the J-best entries for each code-
book.

The recursion terminates when the sub-problem only has one code-
book and the index resulting in the lowest residual is selected. The
refined index î can be returned recursively.

2.2. Training and Inference Procedure

The trainable parameters in the quantization module are codebook
centers c(n)k and N logistic-regression classifiers Cn. For each float
vector x and its encodings Encoder(x) = i, the training loss L con-
sists of two parts:

L = Lresidual + Lprediction, (4)

= ||x−Decode(i)||22 +

N∑
n=1

− log Cn(x)in (5)

where Cn(x)in is the probability of predicting in in Cn. The first term
Lresidual is the reconstruction loss, i.e l22 residual and optimizes Cn.
The second term Lprediction is the prediction loss and encourages
the neural classifiers to select the encoded indexes i improved by
Refine(·, ·). By doing so, the initial estimate given by Cn is expected
to be close to the refined CI. Training is performed based on gradient
descent with Adam [24] optimizer. During inference, the encoding
process described in Sec. 2.1 is repeated to generate CI for test data.

2.3. Analysis of reconstruction loss

Rate-distortion theory can be used to evaluate the reconstruction
performance of the proposed quantization algorithm. For quantiz-
ers with various numbers of codebooks trained on HuBERT-L[3]
with embedding dimension of 1024, the first column of Table 1
shows the relative reconstruction loss (RRL), defined as the mean
of the squared reconstruction error ||x̂− x||22 divided by the mean of
||x − µx||22, i.e. the average sum-square of x after mean normaliza-
tion. The last column shows the best possible distortion assuming
the 1024 dimensions were normally and independently distributed.
This comes from the rate-distortion equation for a memoryless Gaus-
sian source [25]: R(D) = 1

2
log2(σ2

x/D), with σ2
x = 1, the bit-rate

per dimension R set to 8N
1024

since there are N codebooks of 8 bits
each, and solving for distortion D. Although this is a lower bound
on the distortion, the values are actually higher than the second col-
umn as the HuBERT-L embeddings are not strictly independent and
Gaussian.

When applied to features that are normally distributed and inde-
pendent, the algorithm achieves RRL (see second column in Table 1)
that is within 10% of the Shannon lower bound, so the performance
in terms of reconstruction loss does not have that much potential for
further improvement as far as our purposes are concerned.

Table 1: Relative Reconstruction Loss (RRL) and Shannon distor-
tion if embedding dimensions were i.i.d. normal

N RRL(HuBERT) RRL(Gaussian) Shannon distortion

1 0.517 0.992 0.989
4 0.356 0.969 0.958
8 0.278 0.938 0.917

16 0.225 0.876 0.841
32 0.206 0.760 0.707

3. PROPOSED DISTILLATION FRAMEWORK

3.1. Self-supervised pre-trained HuBERT

Recently, self-supervised pre-training has shown promising results
[1, 3] in ASR. Among these methods, HuBERT[3] is one of the
most effective frameworks. HuBERT model comprises of three
parts: convolutional neural network (CNN) encoder, transformer
and acoustic unit discovery system. The CNN encoder processes

raw speech waveform w and generates embedding X = x1:T . The
acoustic unit discovery system then produces the hidden unit target
zt for each xt using k-means clustering. Before feeding embedding
X to the transformer to generate contextualized representations, a set
of randomly selected timestamps are masked. The self-supervised
pre-training objective is to predict the correct hidden unit zt for both
masked and unmasked timestamps with L = αLm + (1 − α)Lu,
where Lm and Lu is the CrossEntropy loss for masked and un-
masked timestamps and α is a tunable coefficient. During training,
zt is refined to improve the clustering quality. After pre-training,
HuBERT can be fine-tuned with labeled speech for ASR tasks[3, 5].

3.2. Traditional KD Methods for Neural Transducers

Neural transducers is a powerful modelling framwork E2E ASR. It
has gained more popularity recently due to its natural support for
streaming and superior performance. To further improve the perfor-
mance of neural transducer, knowledge distillation (KD), or teacher-
student training, is common used. During KD, a student model is
trained to imitate the output of a teacher model. Depending on the
teacher’s output, different loss functions can be applied for KD train-
ing. Kullback-Leibler (KL) divergence is commonly used if teacher
labels are distributions whereas l1 or l2 are more appropriate for con-
tinuous feature. As a transducer generates a 3-D distribution lattice,
directly applying KL-divergence is computational intractable. [26]
used a collapsed version of the distribution lattice to reduce com-
putation, whereas [22] approximated the distribution lattice with its
one-best alignment. Both methods[22, 26] pre-computed the teacher
labels and stored them to disk, which could be problematic for large
training corpora. Instead of utilizing the output distribution, embed-
ding features are another straightforward teacher label. [23] uses
the l2 loss between the encoder embeddings of teacher and student
model for KD. Let teacher embedding TElth = TElth1 , ...,TElthT be
the embedding extracted from the lth-th layer of the teacher model
and SElst = SElst1 , ..., SElstT be the embedding at lst-th layer of the
student model, the KD loss function is:

Lembedding =

T∑
t=1

Dist(TEltht ,LossNet(SElstt)), (6)

where Dist is any function (e.g l1, l2) that measures the distance
between two vectors and LossNet is usually a linear layer that maps
SElst to the same dimension as TElth . TElth are generated on-
the-fly since teacher and student are jointly trained[23]. However,
this will inevitably affect batch size or training speech, which could
affect the performance of the student model.

3.3. MVQ-based KD for Neural Transducers

To alleviate the aforementioned issues, we propose to apply MVQ
on the embedding extracted from an intermediate layer of teacher
TE

lth
t and compress it to CI. Then, instead of regressing TE

lth
t

using l1 or l2 loss, the student model is trained to predict its CI.
Let N be the number of codebooks, MVQ compresses TE

lth
t to

it = (it,1, ..., it,N), with it,n representing which entry in the n-th
codebook is chosen at t-th frame, the loss function is:

Lcb =

T∑
t=1

N∑
n=1

CrossEntropy(it,LossNet(SElstt)), (7)

where LossNet is a module consisting of a linear layer with softmax
activation that transforms the student embedding to probabilities. At
each timestamp t, MVQ-KD performsN independent classification.
If the number of codebook centers in each codebook is 256, each en-

Encoder

Decoder

Joiner

RNN-T loss

Fine-tuned

HuBERT

Multi-Codebook

Vector Quantizer

Uint8 Codebook indexes

Floating Teacher Embedding

CrossEntropy loss

Transcript

0, 255, 1, 4, 100, 7, 29, 8

Fig. 1: MVQ based teacher-student learning.

try in it can be represented by an 8-bit integer. Therefore, they can
be pre-computed and store on disk at very low cost. With N=16 and
teacher embeddings of 1024 dimensional, MVQ achieves a compres-
sion ratio of 256, significantly increasing KD training’s scalability
compared to traditional KD methods. Fig. 1 illustrated the proposed
KD framework for MVQ-based KD.

Different from non-streaming transducer models, streaming
transducer model only has limited access to future context and tends
to emit symbols later. Therefore, applying Eqn. (7) directly on a
streaming transducer could be problematic as it may force the stu-
dent to guess into the future. Inspired by[22], a time-shift variable δ
is introduced to address the temporal mismatch between teacher and
student model. This leads to a modified version of Lcb:

Lcb =

T−δ∑
t=1

N∑
n=1

CrossEntropy(it,LossNet(SElstt+δ)), (8)

The codebook loss Lcb will be used as an auxiliary loss to the
original transducer loss:

Ltotal = Ltransducer + λLcb, (9)

where λ is a tunable scale of the auxiliary loss.

4. EXPERIMENTS

4.1. Datasets and Model

The LibriSpeech ASR corpus [27] was used for all experiments.
The full dataset contains 960h hours of transcribed audio. Among
these, the “train clean 10” subset was used for comparison with
other baseline models and hyper-parameter tuning. During training,
SpecAug[28] and speed perturbation with rate 0.9 and 1.1 are used
for data-augmentation. MUSAN[29] is used for noise-augmentation.
The output vocabulary has 500 subword units and WERs are re-
ported on test-clean and test-other sets using beam search.

The large version of HuBERT[3] is adopted to initialise the en-
coder of the teacher transducer model and finetuned on full Lib-
riSpeech. The student model is also a transducer model with a re-
worked version of Conformer3[30] as encoder. In streaming exper-
iments, we apply causal convolutions and blockwise-limited right
context in attention and train the student model with dynamic chunk
size [31]. Pruned RNNT loss[32] is used for computingLtransducer .

3https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR

Details of teacher and student model are listed in Table 2. The em-
beddings of the 18-th transformer block are extracted for CI gener-
ation as we believe this layer contains rich information while being
less difficult to learn from. Consequently, KD is carried out on the
9-th layer of the student model to share the same relative position as
in the teacher model. A randomly sampled subset of 1000 audios are
used to generate embeddings and train the quantizerQ. Then, CI are
generated by feeding the whole training set to Q and stored to disk.
To compare with l1 and l2 losses, the 18-th layer’s float embeddings
are also stored.

Table 2: Details of teacher and student models

Teacher model Student model

Encoder HuBERT-Large Conformer
Encoder dim 1024 512
Encoder layer 24 12
Num Params 318M 78M

4.2. Impact of the Number of Codebooks

Table 3 demonstrates the impact of codebook numbers (N) on the
MVQ distillation, from 1 to 32. With N=1, the quantization degen-
erates into the traditional VQ. For different N , the scale of Lcb is
tuned individually for optimal performance. Using only one code-
book, the student model already outperforms the baseline model.
The student model consistently improves as N increases. This also
accords with the fact that MVQ achieves lower reconstruction error
if more codebooks are used (see Table 1). As N=16 achieves simi-
lar WERs compared to N=32 while doubling the compression rate,
N=16 is selected in future experiments.

Table 3: WERs with different number of codebooks

N compression-rate test-clean test-other

baseline, 0 - 6.83 18.19
1 4096 5.67 15.77
2 2048 5.58 15.27
4 1024 5.39 14.68
8 512 5.14 14.51

16 256 5.01 13.80
32 128 4.99 13.68

4.3. Teacher-student learning with different losses

Table 4 compares the WERs of student model trained using MVQ
KD with other traditional l1 and l2 losses. To ensure the fairness of
comparison, on-the-fly teacher label generation is not adopted for l1
and l2 as this will limit the batch size. Experiments are only carried
out on clean-100 subset as storing teacher labels of 960h audio for
l1 and l2 loss computation is impractical. The scales of all auxil-
iary losses are tuned individually and only the setup with the lowest
WERs are reported. The following observations can be made from
Table 4. First, the proposed KD framework successfully improves
the performance of the student model. Both MVQ KD and tradi-
tional l1 and l2 method are able to reduce the WERs of the student
model, indicating the effectiveness of using an intermediate layer for
KD. Second, although KD with l2 loss results in the lowest WERs,
MVQ still achieves comparable performance, while being able to be
flexibly applied in larger scale of experiment. During the experi-
ments, it is found that the embedding values of HuBERT model are
unstable, sometimes ranging from -2000 to +3000. Applying l1 and

l2 loss requires special design such as clamping the embedding val-
ues, whereas MVQ-KD is less sensitive to this.

Table 4: WER for baseline and distillation with different losses

config test-clean test-other

baseline 6.83 18.19
l1 5.1 13.69
l22 4.99 13.39
MVQ, N=16 5.01 13.80
MVQ, N=32 4.99 13.68

4.4. Training with full LibriSpeech

To further demonstrate the effectiveness and robustness of MVQ,
experiments are scaled up to the full LibriSpeech for both non-
streaming and streaming student transducer models. For non-
streaming models, relative WER reductions (WERRs) of 13.8%
and 8.2% are achieved on test-clean and test-other. For streaming
models, both WERs and latency are shown for different δ. The
latency is measured against the word-level alignment obtained from
a hidden Markov model using [33]. To get a reasonable estimate
for δ, the locations of posterior peaks in the lattice of teacher and
student models are compared. The following three key observations
can be made. First, MVQ-KD improves the accuracy of streaming
model if a sensible δ is selected. The model trained with δ = 0 has
higher WERs than the baseline model, while the model trained with
larger δ outperforms the baseline model, achieving WERRs of 4.0%
and 4.9% with δ = 5. Second, MVQ-KD reduces the latency of
streaming models. Setting δ to 4 or 5 not only improves the model
accuracy, but also encourages the model to emit faster, achieving a
latency reduction of 0.1 seconds compared to the baseline model.
Third, as δ increases, the latency also increases while the WER
decrease, suggesting that δ controls the trade-off between model
latency and model accuracy.

Table 5: WER of models trained with full LibriSpeech

test-clean test-other latency (s)

Reference models
Teacher, HuBERT-L 1.9 3.94 -
Baseline, non-streaming 2.69 6.11 -
Baseline, streaming 3.03 7.98 0.335

MVQ-KD trained model
Non-streaming 2.32 5.61 -
Streaming, δ = 0 3.13 7.9 0.165
Streaming, δ = 4 2.99 7.64 0.235
Streaming, δ = 5 2.91 7.59 0.259

5. CONCLUSIONS

In this paper, we present an efficient and effective knowledge dis-
tillation (KD) framework for neural transducers based on a novel
Multi-codebook Vector Quantization (MVQ) algorithm. With a fine-
tuned self-supervised pre-trained model, we show that our frame-
work achieves comparable performance as the traditional l1 and l2
losses, while being much faster or requiring hundreds of times less
storage. We also demonstrate that the proposed KD framework is
effective both for non-streaming and streaming student model. In fu-
ture works, we would like to incorporate multiple teacher layers for
KD to further improve the student model. Since MVQ is a general
quantization algorithm, we would also like to explore the feasibility
of applying MVQ-KD on other speech processing tasks.

6. REFERENCES

[1] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and
Michael Auli, “wav2vec 2.0: A framework for self-supervised
learning of speech representations,” in NeurIPS, Vancouver,
2020.

[2] Y. Zhang, James Qin, Daniel S. Park, Wei Han, C. Chiu, et al.,
“Pushing the limits of semi-supervised learning for automatic
speech recognition,” in NeurIPS SAS Workshop, Vancouver,
2020.

[3] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, et al.,
“Hubert: Self-supervised speech representation learning by
masked prediction of hidden units,” IEEE/ACM Trans. on Au-
dio, Speech, and Language Processing, 2021.

[4] Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shu-
jie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yosh-
ioka, Xiong Xiao, et al., “Wavlm: Large-scale self-supervised
pre-training for full stack speech processing,” IEEE Journal of
Selected Topics in Signal Processing, vol. 16, 2022.

[5] Yingzhi Wang, Abdelmoumene Boumadane, and Abdelwahab
Heba, “A fine-tuned wav2vec 2.0/hubert benchmark for speech
emotion recognition, speaker verification and spoken language
understanding,” arXiv preprint arXiv:2111.02735, 2021.

[6] Leonardo Pepino, Pablo Riera, and Luciana Ferrer, “Emotion
recognition from speech using wav2vec 2.0 embeddings,” in
Interspeech, Brno, 2021.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova, “Bert: Pre-training of deep bidirectional trans-
formers for language understanding,” in NAACL, Minneapolis,
2019.

[8] Steffen Schneider, Alexei Baevski, Ronan Collobert, and
Michael Auli, “wav2vec: Unsupervised pre-training for speech
recognition,” in Interspeech, Graz, 2019.

[9] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean, “Distilling the
knowledge in a neural network,” in NIPS Deep Learning Work-
shop, Montreal, 2014.

[10] Zhong Meng, Jinyu Li, Yashesh Gaur, and Yifan Gong, “Do-
main adaptation via teacher-student learning for end-to-end
speech recognition,” in ASRU, Sentosa, 2019.

[11] Vimal Manohar, Pegah Ghahremani, Daniel Povey, and San-
jeev Khudanpur, “A teacher-student learning approach for un-
supervised domain adaptation of sequence-trained asr models,”
in SLT, Athens, 2018.

[12] Gakuto Kurata and George Saon, “Knowledge distillation
from offline to streaming rnn transducer for end-to-end speech
recognition.,” in Interspeech, Shanghai, 2020.

[13] Thibault Doutre, Wei Han, Min Ma, Zhiyun Lu, Chung-Cheng
Chiu, et al., “Improving streaming automatic speech recog-
nition with non-streaming model distillation on unsupervised
data,” in ICASSP, Toronto, 2021.

[14] Yoshua Bengio, “Deep learning of representations for unsuper-
vised and transfer learning,” in Proceedings of ICML workshop
on unsupervised and transfer learning, 2012.

[15] Naoyuki Kanda, Yusuke Fujita, and Kenji Nagamatsu, “Se-
quence distillation for purely sequence trained acoustic mod-
els,” in ICASSP, Calgary, 2018.

[16] Alexei Baevski, Steffen Schneider, and Michael Auli, “vq-
wav2vec: Self-supervised learning of discrete speech represen-
tations,” arXiv preprint arXiv:1910.05453, 2019.

[17] Hangbo Bao, Li Dong, and Furu Wei, “Beit: Bert pre-training
of image transformers,” arXiv preprint arXiv:2106.08254,
2021.

[18] Chung-Cheng Chiu, James Qin, Yu Zhang, Jiahui Yu,
and Yonghui Wu, “Self-supervised learning with random-
projection quantizer for speech recognition,” arXiv preprint
arXiv:2202.01855, 2022.

[19] Christopher F Barnes, Syed A Rizvi, and Nasser M Nasrabadi,
“Advances in residual vector quantization: A review,” IEEE
transactions on image processing, vol. 5, 1996.

[20] Christopher F Barnes and Richard L Frost, “Vector quantiz-
ers with direct sum codebooks,” IEEE Trans. on information
theory, vol. 39, 1993.

[21] Christopher F Barnes and John P Watkins, “Embedded wavelet
zerotree coding with direct sum quantization structures,” in
Proceedings DCC’95 Data Compression Conference, Snow-
bird, 1995.

[22] Xiaoyu Yang, Qiujia Li, and Philip C Woodland, “Knowledge
distillation for neural transducers from large self-supervised
pre-trained models,” in ICASSP, Singapore, 2022.

[23] Rupak Vignesh Swaminathan, Brian King, et al., “Codert: Dis-
tilling encoder representations with co-learning for transducer-
based speech recognition,” in Interspeech, Brno, 2021.

[24] D. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” Computer Science, 2014.

[25] MTCAJ Thomas and A Thomas Joy, Elements of information
theory, Wiley-Interscience, 2006.

[26] Sankaran Panchapagesan, Daniel S Park, Chung-Cheng Chiu,
Yuan Shangguan, Qiao Liang, and Alexander Gruenstein, “Ef-
ficient knowledge distillation for rnn-transducer models,” in
ICASSP, Toronto, 2021.

[27] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev
Khudanpur, “Librispeech: an asr corpus based on public do-
main audio books,” in ICASSP, Brisbane, 2015.

[28] Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu,
Barret Zoph, et al., “Specaugment: A simple data augmenta-
tion method for automatic speech recognition,” in Interspeech,
Graz, 2019.

[29] David Snyder, Guoguo Chen, and Daniel Povey, “MU-
SAN: A Music, Speech, and Noise Corpus,” 2015,
arXiv:1510.08484v1.

[30] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar,
et al., “Conformer: Convolution-augmented transformer for
speech recognition,” in Interspeech, Shanghai, 2020.

[31] Binbin Zhang, Di Wu, Zhuoyuan Yao, Xiong Wang, Fan
Yu, Chao Yang, Liyong Guo, Yaguang Hu, Lei Xie, and
Xin Lei, “Unified streaming and non-streaming two-pass
end-to-end model for speech recognition,” arXiv preprint
arXiv:2012.05481, 2020.

[32] Fangjun Kuang, Liyong Guo, Wei Kang, Long Lin, Ming-
shuang Luo, Zengwei Yao, and Daniel Povey, “Pruned rnn-t for
fast, memory-efficient asr training,” in Interspeech, Incheon,
2022.

[33] Michael McAuliffe, Michaela Socolof, Sarah Mihuc, Michael
Wagner, and Morgan Sonderegger, “Montreal forced aligner:
Trainable text-speech alignment using kaldi.,” in Interspeech,
Stockholm, 2017.

	1 Introduction
	2 Trainable multi-codebook quantizer
	2.1 Iterative encoding scheme
	2.2 Training and Inference Procedure
	2.3 Analysis of reconstruction loss

	3 Proposed distillation framework
	3.1 Self-supervised pre-trained HuBERT
	3.2 Traditional KD Methods for Neural Transducers
	3.3 MVQ-based KD for Neural Transducers

	4 Experiments
	4.1 Datasets and Model
	4.2 Impact of the Number of Codebooks
	4.3 Teacher-student learning with different losses
	4.4 Training with full LibriSpeech

	5 Conclusions
	6 References

