
A PARALLELIZABLE LATTICE RESCORING STRATEGY
WITH NEURAL LANGUAGE MODELS

Ke Li1, Daniel Povey3, Sanjeev Khudanpur1,2

1Center for Language and Speech Processing & 2Human Language Technology Center of Excellence
The Johns Hopkins University, Baltimore, MD 21218, USA.

3Xiaomi Corp., Beijing, China.
{kli26,khudanpur}@jhu.edu, dpovey@gmail.com

ABSTRACT
This paper proposes a parallel computation strategy and a posterior-
based lattice expansion algorithm for efficient lattice rescoring with
neural language models (LMs) for automatic speech recognition.
First, lattices from first-pass decoding are expanded by the proposed
posterior-based lattice expansion algorithm. Second, each expanded
lattice is converted into a minimal list of hypotheses that covers every
arc. Each hypothesis is constrained to be the best path for at least one
arc it includes. For each lattice, the neural LM scores of the minimal
list are computed in parallel and are then integrated back to the lattice
in the rescoring stage. Experiments on the Switchboard dataset show
that the proposed rescoring strategy obtains comparable recognition
performance and generates more compact lattices than a competitive
baseline method. Furthermore, the parallel rescoring method offers
more flexibility by simplifying the integration of PyTorch-trained
neural LMs for lattice rescoring with Kaldi.

Index Terms— lattice rescoring, Transformer, parallel compu-
tation, neural language models, automatic speech recognition

1. INTRODUCTION

Neural language models (LMs), including long short-term memory
(LSTM) and Transformer based ones, have significantly improved
performance over n-gram LMs in automatic speech recognition
(ASR) [1, 2, 3, 4, 5, 6, 7]. Since it is challenging for one-pass
decoding with a neural LM to obtain competitive performance with
lower latency than a two-pass approach [8, 9, 10, 11, 12], a widely
adopted way is still to use neural LMs to rescore N -best hypotheses
(alternative word-sequences) or lattices that are decoded with an
n-gram LM [13, 14, 15, 10, 16, 17, 18, 19]. A lattice is a compact
representation of the hypothesis space for an utterance. N -best hy-
potheses only cover a small subspace. Thus, lattice rescoring usually
outperforms N -best rescoring.

The key for lattice rescoring is to balance accuracy and effi-
ciency since exact rescoring is not practical because it involves ex-
panding a lattice into a linear or prefix tree structure and rescoring
each hypothesis. A major speed bottleneck in lattice rescoring using
a neural LM is the LM evaluation. Neural LM probabilities are usu-
ally computed on-the-fly and sequentially among hypotheses in a lat-
tice during lattice traversal [14, 16, 19]. Though caching computed
probabilities [16] or pruning-based methods [14, 19] can reduce the
number of evaluations, the sequential order of LM evaluation in a
lattice is inefficient. The process can be accelerated significantly by
evaluating multiple hypotheses in parallel. However, given the graph
structure of lattices, taking advantage of such speedup is challeng-
ing, especially for lattice rescoring methods that perform expansion

and rescoring simultaneously. To enable batch computation, we con-
vert a lattice into a minimal list of hypotheses that satisfy two condi-
tions. First, every arc should be included in at least one hypothesis.
Second, each hypothesis is the best path for at least one arc it con-
tains. Computed neural LM scores are integrated back into the lattice
for rescoring where score refer to negative log probabilities.

Lattice rescoring usually involves lattice expansion. Performing
rescoring without changing the lattice structure is feasible, but it is
generally not as good as with expansion [14]. To prevent expanded
lattices from being too large, equivalence estimation of history states
and pruning-based methods have been proposed [14, 15, 10, 16, 17,
19]. For example, an n-gram approximation method restricts lattice
size by merging history states that share (n− 1) most recent words.
But n-gram approximation based expansion method may sacrifice
accuracy and waste computation on less likely paths. The general
goal of lattice expansion is to make arcs on relatively probable paths
have unique histories so that neural LM scores for them can be ex-
act. To this end, we propose a new lattice expansion method that
expands arcs only when their posteriors are larger than a threshold.
Effectively, only more probable arcs are expanded so that arcs on
sufficiently likely paths tend to have unique histories.

In summary, we propose an efficient lattice rescoring strategy
that enables parallel computation of neural LM scores within a lat-
tice. The strategy mainly involves operations such as posterior-based
lattice expansion and lattice-to-list conversion using a proposed path
cover algorithm. Furthermore, we experiment with a refined lat-
tice rescoring strategy to further improve results. The proposed
lattice-to-list conversion makes it easier to integrate neural LMs
trained with PyTorch (or other tools) for efficient lattice rescoring in
Kaldi [20]. Our code is open-source in Kaldi.

2. LATTICE CONVERSION AND EXPANSION

2.1. Lattices

A lattice is a graph representation of hypothesis space for an utter-
ance and it can encode an exponential number of hypotheses with
respect to the number of states. A lattice has one start state and a set
of final states. A path in a lattice is consecutive transitions from the
start state to a final state. Assuming lattices generated from first-pass
decoding in a weighted finite state transducers (FST) based ASR sys-
tem are determinized, each path represents a unique word-sequence.

Next, we will introduce the methods for lattice-to-list conver-
sion, estimation of neural LM scores for each arc, and the posterior-
based lattice expansion.



2.2. Lattice-to-List Conversion

Many lattice rescoring methods compute neural LM scores for arcs
within a lattice dynamically during traversing the lattice. Consider-
ing that neural LM evaluation is a major speed bottleneck and the
sequential order of traversing a lattice is inefficient, we propose a
method to enable batch computation of hypotheses within a lattice.
The general idea is to convert a lattice into a list of hypotheses that
include every arc. Neural LM scores are then computed in parallel
and merged back into the lattice.

A lattice L can be viewed as a weighted directed acyclic graph
(V,E), where V and E denote the set of states (vertices) and arcs
(edges), respectively. We define a path cover of lattice L as a set
of paths such that every arc in E is included in at least one path in
the set. A minimal path cover of L is a path cover containing fewest
possible paths. Our definition of path cover is different from the
original definition in graph theory in which paths should cover states
rather than arcs and they may start and end anywhere.

The size of a minimal path cover can be determined as∑
s∈V

(max(degout[s]− degin[s], 0)) (1)

where degout[s] and degin[s] are the number of outgoing and incom-
ing arcs of state s, because for each state, extra outgoing arcs should
be covered by extra paths. Considering efficiency, the list of hy-
potheses converted from a lattice should be a minimal path cover.

However, since neural LM scores computed from the list directly
affect rescoring, the quality of the hypotheses may matter more than
the size. For each arc, a common choice for its history is the one in
the best path that contains the arc. Therefore, a straightforward way
of generating the list is: i) take the best path that contains each arc
and sort them, ii) from the worst path to the best path, remove one if
removing it does not cause any arc uncovered. While this method is
not optimal since some generated paths are redundant and need to be
removed. To fix it, we record the best path information for each arc
during path generation so that it will not be regenerated if it already
exists. The pesudocode for this method is shown below.

Algorithm 1 A Constrained Path Cover Algorithm
Input: L: a lattice
Output: O: a list of paths, each is represented as a linear FST.

1: procedure CONSTRAINEDPATHCOVER(L)
2: ToplogicalSort(L)
3: P ← [] . A list of pairs of a path and its cost
4: α, β ← ViterbiForwardBackward(L)
5: for s = 0 : S − 1 do . Loop over states
6: for e ∈ s.out do . Loop over outgoing arcs of s
7: if best path including e is not generated then
8: p, c← BestPathForAnArc(α,β,s,e)
9: P .append((p, c))

10: Sort(P ) . Sort paths based on their costs
11: O ← ConstructOutputLattice(P )

“Constrained” means that each path must be the best path for
at least one arc it includes. The ViterbiForwardBackward function
in Algorithm 1 computes best costs α and β from the start state to
every other state and from every final state to every other state, re-
spectively. It also records the best predecessor and successor states
of each state so that best paths can be found. The linear FSTs that
represent the best paths are then converted into word-sequences for
neural LM evaluation.

2.3. Estimation of Neural LM Scores

Neural LM scores of word-sequences converted from a lattice by
the path cover algorithm need to be integrated back into the lattice
for rescoring. If an arc in the lattice is shared by multiple paths,
there are multiple neural LM scores associated with the arc. An
approximation thus needs to be made to assign a single neural LM
score for the arc. We experiment with three ways for obtaining the
approximation: (i) by simply averaging the neural LM scores from
the shared paths, (ii) obtaining a refined estimation using a weighted
average, where weights are normalized values of neural LM scores
of histories for the arc, and (iii) choosing the neural LM score from
the lowest-cost path among the shared paths. Note, the lowest-cost
path is not guaranteed to be the best path including the arc in the
lattice because of the way the list of word-sequences generated. We
thus refer to the third estimation as “semi-Viterbi” in the experiment.

2.4. Posterior-based Lattice Expansion

Lattice rescoring usually involves lattice expansion. To prevent the
expanded lattices from blowing up in size, a commonly adopted ap-
proach is an n-gram approximation of history states. It merges his-
tory states with the same (n − 1) most recent words. However, it
sacrifices accuracy since histories for computing neural LM scores
may not be unique for many arcs. It also may expand out many paths
with low probability, which is not optimal. To alleviate the problems
of n-gram approximation, we propose a new expansion method. It
expands arcs with posteriors higher than a threshold ε ∈ (0, 1). This
method aims to make arcs on relatively probable paths have unique
histories so that neural LM scores can be exactly computed. We refer
to this method as posterior-based lattice expansion as present below.

Algorithm 2 A Posterior-based Lattice Expansion Algorithm
Input: Lin: a lattice; ε: a threshold for arc posteriors
Output: Lout: an expanded lattice

1: procedure POSTERIOREXPANSION(Lin, ε)
2: ToplogicalSort(Lin)
3: α← [] . Initialize forward logprobs for states in Lout

4: β ← BackwardCosts(Lin) . β[0] is the total logprob
5: Lout.SetStart(0) . Add start state 0 in Lout

6: M [(0, 0)]← 0 . Initialize state map from a state pair
(sin, sout) to a state sout, where sin ∈ Lin, sout ∈ Lout

7: Q.push((0, 0)) . Initialize the queue of state pairs
8: while !Q.empty() do
9: sin, sout ← DeQueue(Q)

10: for e ∈ sin.out do . Loop over outgoing arcs of sin

11: snext
in ← e.nextstate

12: ae ← α[sout] + e.weight . weight is −logprob
13: epost ← exp(ae + β[snext

in ]− β[0]) . arc posterior
14: if epost > ε then
15: snext

out ← Lout.AddState()
16: Q.push((snext

in , snext
out ))

17: M [(snext
in , snext

out )]← snext
out

18: else if snext
in is never copied to Lout then

19: Repeat line 15-17 and mark snext
in as copied

20: else
21: snext

out ← GetCopyState(snext
in )

22: Lout.CreateArc(M [(sin, sout)], e, s
next
out )

23: α[snext
out ] += ae . Update forward logprobs

Algorithm 2 is a composition-type algorithm mainly imple-
mented with a queue of state pairs. Each pair represents a state in



the input lattice and its copy state in the expanded lattice. The basic
question for lattice expansion is whether an incoming arc should be
split off from the rest of the incoming arcs to its destination state.
The rule is to allocate a new copy of the destination state if the arc
posterior is larger than ε, otherwise transition to the original desti-
nation state. The threshold ε controls the size of expanded lattices
such that larger ε results in smaller lattices. The backward costs β
are computed in advance while the forward costs α are computed
dynamically during creating the expanded lattice.

3. LATTICE RESCORING STRATEGY

3.1. Non-iterative Lattice Rescoring

Combining the posterior-based lattice expansion algorithm and con-
strained path cover method, we propose an efficient lattice rescoring
strategy that enables batch computation for words within a lattice. It
mainly consists of two steps. First, lattices from first-pass decoding
are expanded by the posterior-based lattice expansion method. We
apply beam pruning before lattice expansion since in practice, we
observe that it can reduce lattice size without hurting performance.
Second, each expanded lattice is converted into a list of hypothe-
ses. The neural LM scores that are computed in parallel are approx-
imated when necessary and merged back into the expanded lattices
for rescoring. We then find the best path in each rescored lattice
and compute WERs. The proposed lattice rescoring strategy is re-
ferred to as “non-iterative” to distinguish it from a two-pass rescor-
ing method introduced in section 3.2.

When neural LM scores are put back to lattices, they are inter-
polated with LM scores of the original n-gram LMThe interpolation
involves removing a portion of the original LM scores from the lat-
tice, which is implemented by FST composition.

3.2. Iterative Lattice Rescoring

To further improve the performance of the non-iterative lattice
rescoring method described above, we propose a refined approach
which introduces an extra rescoring stage. First, the original n-
gram LM scores on decoded lattices are replaced with neural LM
scores while the lattice structure is fixed. The proposed non-iterative
rescoring strategy is then applied to the resulting lattices. We ex-
pect the integrated neural LM scores from the score replacement
stage can result in better path cover lists and thus more accurate
recognition results than the non-iterative method alone.

We refer to the refined rescoring approach as “iterative” since
rescoring are executed twice. An alternative way is to perform the
non-iterative rescoring twice. But it complicates the rescoring pro-
cedure and slows the rescoring speed by introducing an extra lattice
expansion operation.

4. EXPERIMENTS

4.1. Datasets and Setups

We conduct experiments on the telephone speech corpus Switch-
board (SWBD) which consists of approximately 260 hours of
speech. We use Kaldi for acoustic model training and decoding.
The acoustic model is factorized TDNNs [21] trained with the LF-
MMI objective [22]. The audio data of English Fisher corpus is not
included. We use Kaldi RNNLM [3] for text data preprocessing.
There are a total of 34M words in the training dataset.

We experiment with both LSTM and Transformer. They are
word-level LMs with vocabulary around 30K and trained with Py-
Torch. We use a 2-layer LSTM model with hidden dimension 650,

and a 6-layer Transformer model with 8 heads and 512 hidden di-
mension. The LSTM and Transformer LMs have a total of 26.5M
and 25M parameters respectively, both with parameter tying. We
refer the readers to [23] for further details about the models.

Besides, we train an LSTM LM with Kaldi to compare the
proposed rescoring method with the pruned lattice rescoring algo-
rithm [19]. We do not use PyTorch-trained LMs for comparison
since integrating them into the pruned rescoring algorithm is rel-
atively complicated. That is also a motivation to develop the new
lattice rescoring strategy.

4.2. Effect of Estimation Methods

We evaluate the performance of the three approximation methods for
neural LM scores with both LSTM and Transformer models using
the non-iterative lattice rescoring strategy. WERs in Table 1 show
that the semi-Viterbi estimation consistently outperforms the other
two. It is thus used in all the remaining experiments.
Table 1: WERs (%) on Hub5’00 (full set) of SWBD from the non-
iterative lattice rescoring strategy with three estimation methods.

Model ε Average Weighted Average Semi-Viterbi

LSTM 0.5 10.8 10.8 10.7
0.05 10.7 10.7 10.6

Transformer 0.5 10.7 10.7 10.6
0.05 10.6 10.6 10.5

4.3. Analysis of Iterative Rescoring

We compare the non-iterative and iterative lattice rescoring meth-
ods using a Transformer LM. The parameter ε was set to 0.5 for the
non-iterative method and 0.1 for the iterative one. The results of the
iterative rescoring approach are in the last row in Table 2, and “Score
replacement” refers to the refined operation of replacing n-gram LM
scores on decoded lattices with neural LM ones. The 0.3% absolute
WER reduction on Hub5’00 from score replacement shows the ben-
efit of neural LM over the original n-gram LM. The observation that
score replacement performs worse than the non-iterative rescoring
approach alone indicates the value of lattice expansion.

Table 2: WERs (%) from proposed lattice rescoring strategies with
a Transformer LM.

Rescoring Method Hub5’00 Swb Callhm

Non-iterative (ε = 0.5) 10.6 6.8 14.3
Score replacement 10.8 6.8 14.6
Score replacement + Non-iterative 10.3 6.6 14.0

4.4. Comparison with n-gram Expansion

The performance of the proposed lattice expansion is compared with
n-gram approximation based expansion using iterative rescoring
strategy and a Transformer LM. The same pruning beam is used
for a fair comparison. We evaluate the two methods through av-
erage log-likelihood of best paths and WER from rescored lattices
in the Hub5’00 test set. Fig. 1(a) summarizes the log-likelihoods
and lattice depths measured in frame-level average number of arcs
for different ε values and n-gram orders. We can observe that the
posterior-based expansion method results in higher log-likelihoods
than n-gram expansion. The corresponding WERs in Fig. 1(b) show
that the proposed expansion method generates more compact lat-
tices with better recognition performance. Though WER is a more



noisy metric, it essentially reflects the tendency of the log-likelihood
curve. We can infer from the results that lattice rescoring with the
new expansion method can be faster for even better recognition
performance than n-gram expansion.

5 10 15 20 25 30 35 40 45
Lattice depth

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Lo
g
-l

ik
e
lih

o
o
d

+2.7489e2

ε=0.5

ε=0.2

ε=0.05

ε=0.01
ε=0.0018

n=4

n=5

n=6
n=7

n=8

Posterior Expansion

n-gram Expansion

(a) Log-likelihoods and lattice depths.

5 10 15 20 25 30 35 40 45
Lattice depth

10.20

10.25

10.30

10.35

10.40

10.45

10.50

10.55

W
E
R

 (
%

)

ε=0.5

ε=0.2

ε=0.05

ε=0.01

ε=0.0018

n=4

n=5

n=6

n=7
n=8

Posterior Expansion

n-gram Expansion

(b) WERs and lattice depths.

Fig. 1: Log-likelihoods, WERs, and lattice depths for different ε
values and n-gram orders, respectively.

4.5. Comparison with Pruned Lattice Rescoring

We compare the proposed non-iterative lattice rescoring method with
the pruned lattice rescoring algorithm [19] in Kaldi. An LSTM LM
trained with Kaldi RNNLM toolkit is used for experiments. WERs
and lattice depths (measured as average number of arcs cross a frame
on rescored lattices of Hub5’00 full set) are present in Table 3. The
WERs from using a Kneser–Ney (KN) smoothed 4-gram LM and
N -best rescoring are shown for reference.

Table 3: WERs (%) and lattice depths from pruned lattice rescoring
and the proposed non-iterative lattice rescoring.

Method WER Lattice Depth
Hub5’00 Swb Callhm

4-gram KN 12.8 8.6 17.0 31.5
N -best 11.3 7.5 15.0 -
Pruned (4-gram approx.) 11.2 7.3 15.0 15.1

Non-iterative (ε = 0.5) 11.1 7.4 14.9 6.4

For both lattice rescoring methods, the interpolation weight of
the LSTM LM (with the 4-gram LM) is 0.8. Compared with the
pruned lattice rescoring, the non-iterative rescoring strategy obtains
competitive performance and generates smaller lattices.

4.6. Speedup

In the proposed lattice rescoring strategies, the main speedups are
from beam pruning and parallel computation of neural LM scores.
Beam pruning reduces size of lattices by 3-4 times without degrading
WERs in our experiments. The speedup by the batch computation
varies with batch size and models. Compared with sequential evalu-
ation, batch computation gives around 5-6 speedup with the PyTorch
LSTM in a non-iterative rescoring setup.

Compared with N -best rescoring (with different Ns) in a par-
allel computation mode within each lattice as well, the proposed
non-iterative lattice rescoring method accelerates the process by 1-3
times while obtains the same WERs. Besides, lattice rescoring with
the Transformer LM is faster than with the PyTorch LSTM LM. This
is expected considering the non-recurrent structure and fewer total
parameters of the Transformer LM.

4.7. WERs on SWBD

We present WERs on SWBD with both N -best and lattice rescoring
in Table 4. The Transformer LM was used in both non-iterative and
iterative rescoring methods. For N -best rescoring with the PyTorch
trained LSTM, the state-carry trick [24] was used. N -best rescoring
with the Transformer LM obtains slightly better performance than
the PyTorch LSTM, consistent with the results from lattice rescor-
ing in Table 1. As expected, both non-iterative and iterative lattice
rescoring methods obtain better recognition performance than N -
best rescoring, and smaller expansion threshold generally leads to
better WER. However, since the computation cost for the iterative
rescoring method is roughly doubled, non-iterative rescoring is more
practical considering latency.

Table 4: WERs (%) from proposed lattice rescoring strategies with
a Transformer LM. N is set to 20 for N -best rescoring.

Method Hub5’00 Swb Callhm

4-gram KN 12.8 8.6 17.0
N -best (LSTM) 10.9 7.1 14.6
N -best (Transformer) 10.8 7.2 14.4

Non-iterative (ε = 0.5) 10.6 6.8 14.3
Non-iterative (ε = 0.005) 10.4 6.8 14.0

Iterative (ε = 0.1) 10.3 6.6 14.0
Iterative (ε = 0.001) 10.2 6.5 13.9

5. CONCLUSION AND FUTURE WORK

In this work, we propose an efficient lattice rescoring strategy that
computing neural LM scores within a lattice in parallel. The pro-
posed method mainly consists of a posterior-based lattice expan-
sion algorithm and a constrained path cover method for convert-
ing a lattice into a list representation. We also propose a refined
rescoring strategy for further accuracy improvement. Experiments
on SWBD show that the posterior-based lattice expansion outper-
forms n-gram expansion. The proposed rescoring strategy obtains
comparable WERs with marginally faster speed compared with the
pruned lattice rescoring. To achieve the same recognition perfor-
mance, the proposed rescoring method generally is faster than N -
best rescoring in batch computation mode as well.

The proposed parallel rescoring strategy makes it easier and
more flexible to perform lattice rescoring with PyTorch-trained neu-
ral LMs in Kaldi. In the future, we plan to explore more effective
ways of lattice expansion for further speedup.



6. REFERENCES

[1] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ,
and Sanjeev Khudanpur, “Recurrent neural network based lan-
guage model,” in Proc. of Interspeech, 2010.

[2] Xie Chen, Xunying Liu, Mark JF Gales, and Philip C Wood-
land, “Recurrent neural network language model training with
noise contrastive estimation for speech recognition,” in Proc.
of ICASSP, 2015.

[3] Hainan Xu, Ke Li, Yiming Wang, Jian Wang, Shiyin Kang, Xie
Chen, Daniel Povey, and Sanjeev Khudanpur, “Neural network
language modeling with letter-based features and importance
sampling,” in Proc. of ICASSP, 2018.

[4] Neil Zeghidour, Qiantong Xu, Vitaliy Liptchinsky, Nico-
las Usunier, Gabriel Synnaeve, and Ronan Collobert,
“Fully convolutional speech recognition,” arXiv preprint
arXiv:1812.06864, 2018.

[5] Gabriel Synnaeve, Qiantong Xu, Jacob Kahn, Tatiana
Likhomanenko, Edouard Grave, Vineel Pratap, Anuroop Sri-
ram, Vitaliy Liptchinsky, and Ronan Collobert, “End-to-end
asr: from supervised to semi-supervised learning with modern
architectures,” arXiv preprint arXiv:1911.08460, 2019.

[6] Kazuki Irie, Albert Zeyer, Ralf Schlüter, and Hermann Ney,
“Language modeling with deep transformers,” in Proc. of In-
terspeech, 2019.

[7] Ke Li, Zhe Liu, Tianxing He, Hongzhao Huang, Fuchun Peng,
Daniel Povey, and Sanjeev Khudanpur, “An empirical study of
transformer-based neural language model adaptation,” in Proc.
of ICASSP, 2020.

[8] Takaaki Hori, Yotaro Kubo, and Atsushi Nakamura, “Real-
time one-pass decoding with recurrent neural network lan-
guage model for speech recognition,” in Proc. of ICASSP,
2014.

[9] Yongzhe Shi, Wei-Qiang Zhang, Meng Cai, and Jia Liu, “Ef-
ficient one-pass decoding with nnlm for speech recognition,”
IEEE Signal Processing Letters, 2014.

[10] Martin Sundermeyer, Hermann Ney, and Ralf Schlüter, “From
feedforward to recurrent lstm neural networks for language
modeling,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 23, no. 3, pp. 517–529, 2015.

[11] Eugen Beck, Wei Zhou, Ralf Schlüter, and Hermann Ney,
“Lstm language models for lvcsr in first-pass decoding and
lattice-rescoring,” arXiv preprint arXiv:1907.01030, 2019.

[12] Javier Jorge, Adria Giménez, Javier Iranzo-Sánchez, Joan Al-
bert Silvestre-Cerda, Jorge Civera, Albert Sanchis, and Alfons
Juan, “Lstm-based one-pass decoder for low-latency stream-
ing,” in Proc. of ICASSP, 2020.

[13] Anoop Deoras, Tomáš Mikolov, and Kenneth Church, “A fast
re-scoring strategy to capture long-distance dependencies,” in
Proc. of EMNLP, 2011.

[14] Martin Sundermeyer, Zoltán Tüske, Ralf Schlüter, and Her-
mann Ney, “Lattice decoding and rescoring with long-span
neural network language models,” in Proc. of Interspeech,
2014.

[15] Xunying Liu, Yongqiang Wang, Xie Chen, Mark JF Gales, and
Philip C Woodland, “Efficient lattice rescoring using recurrent
neural network language models,” in Proc. of ICASSP, 2014.

[16] Xunying Liu, Xie Chen, Yongqiang Wang, Mark JF Gales, and
Philip C Woodland, “Two efficient lattice rescoring methods
using recurrent neural network language models,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol.
24, no. 8, pp. 1438–1449, 2016.

[17] Xie Chen, Xunying Liu, Anton Ragni, Yu Wang, and Mark JF
Gales, “Future word contexts in neural network language mod-
els,” in Proc. of ASRU, 2017.

[18] Shankar Kumar, Michael Nirschl, Daniel Holtmann-Rice,
Hank Liao, Ananda Theertha Suresh, and Felix Yu, “Lattice
rescoring strategies for long short term memory language mod-
els in speech recognition,” in Proc. of ASRU, 2017.

[19] Hainan Xu, Tongfei Chen, Dongji Gao, Yiming Wang, Ke Li,
Nagendra Goel, Yishay Carmiel, Daniel Povey, and Sanjeev
Khudanpur, “A pruned rnnlm lattice-rescoring algorithm for
automatic speech recognition,” in Proc. of ICASSP, 2018.

[20] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Bur-
get, Ondrej Glembek, Nagendra Goel, Mirko Hannemann, Petr
Motlicek, Yanmin Qian, Petr Schwarz, et al., “The kaldi speech
recognition toolkit,” in Proc. of ASRU, 2011.

[21] Daniel Povey, Gaofeng Cheng, Yiming Wang, Ke Li, Hainan
Xu, Mahsa Yarmohammadi, and Sanjeev Khudanpur, “Semi-
orthogonal low-rank matrix factorization for deep neural net-
works.,” in Proc. of Interspeech, 2018.

[22] Daniel Povey, Vijayaditya Peddinti, Daniel Galvez, Pegah
Ghahremani, Vimal Manohar, Xingyu Na, Yiming Wang, and
Sanjeev Khudanpur, “Purely sequence-trained neural networks
for asr based on lattice-free mmi.,” in Proc. of Interspeech,
2016.

[23] Ke Li, Daniel Povey, and Sanjeev Khudanpur, “Neural lan-
guage modeling with implicit cache pointers,” in Proc. of In-
terspeech, 2020.

[24] Kazuki Irie, Albert Zeyer, Ralf Schlüter, and Hermann Ney,
“Training language models for long-span cross-sentence eval-
uation,” in Proc. of ASRU, 2019.


	 Introduction
	 Lattice Conversion and Expansion
	 Lattices
	 Lattice-to-List Conversion
	 Estimation of Neural LM Scores
	 Posterior-based Lattice Expansion

	 Lattice Rescoring Strategy
	 Non-iterative Lattice Rescoring
	 Iterative Lattice Rescoring

	 Experiments
	 Datasets and Setups
	 Effect of Estimation Methods
	 Analysis of Iterative Rescoring
	 Comparison with n-gram Expansion
	 Comparison with Pruned Lattice Rescoring
	 Speedup
	 WERs on SWBD

	 Conclusion and Future Work
	 References

