Emotion Identification from raw speech signals using DNNs
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Abstract

We investigate a number of Deep Neural Network (DNN)
architectures for emotion identification with the IEMOCAP
database. First we compare different feature extraction front-
ends: we compare high-dimensional MFCC input (equivalent
to filterbanks), versus frequency-domain and time-domain ap-
proaches to learning filters as part of the network. We obtain the
best results with the time-domain filter-learning approach. Next
we investigated different ways to aggregate information over the
duration of an utterance. We tried approaches with a single la-
bel per utterance with time aggregation inside the network; and
approaches where the label is repeated for each frame. Hav-
ing a separate label per frame seemed to work best, and the
best architecture that we tried interleaves TDNN-LSTM with
time-restricted self-attention, achieving a weighted accuracy of
70.6%, versus 61.8% for the best previously published system
which used 257-dimensional Fourier log-energies as input.

1. INTRODUCTION

Speech based emotion classification has been found to be gain-
ing popularity for the development of emotionally sensitive Hu-
man Machine Interaction (HMI) systems. In the evolving se-
tups of intelligent commercial dialogue systems and smart call
centers, emotion information obtained from speech can be used
as meta data to understand speaker’s psychology and response.
Human expresses emotional state related information through
numerous subtle ways that may or may not be directly repre-
sented by common features such as mel filterbank or formant
locations, pitch, voicing etc. Research has been primarily fo-
cused on deriving useful statistical feature sets from low level
acoustic cues as well as on developing efficient machine learn-
ing based modeling strategy to learn the emotion dependent
temporal and contextual variations of speech. Machine learning
based models have been also used to derive high level features
to represent the whole utterance from low level acoustic fea-
tures. Recently, deep learning approaches are becoming popular
for modeling emotion specific information from speech signals
[1, 2, 3, 4, 5]. However, there is a recent trend in deep speech
based system design which attempts to derive features of the
input signal directly from raw unprocessed speech waveforms
excluding the necessity of hard coded feature extraction out-
side the Deep Neural Network (DNN). Such approaches have
shown appreciable reliability and observed state of art perfor-
mance in speech recognition task [6, 7, 8]. In the domain of
paralinguistic, Trigeorgis et al., 2016, used raw waveforms for
speech emotion dimensional rating in a deep CNN framework
[9]. Motivated by such success of raw waveforms, in this work

we propose to use raw waveform front end layers to learn emo-
tion specific cues within the network and design end to end
DNN setup for categorical emotion identification task. The raw
waveform front end [6] used in this work attempts to learn spe-
cific set of filters, which are jointly optimized with rest of the
network and the filter bank is learned to optimize emotion iden-
tification objective.

A challenging issue in emotion identification task is effec-
tive modeling of the long temporal context. This is because
emotion specific information lies on the long span of time to a
great extent. We explore multiple DNN architecture to appro-
priately model such long term dependencies of emotion cues
and provide a comparative analysis. We use temporal convolu-
tion in the form of time-delay neural network (TDNN) layers
[10] and unidirectional recurrent projected Long Short Term
Memory (LSTM) [11] layers individually with the raw wave-
form front end. We also experiment an interleaving TDNN with
unidirectional LSTM (TDNN-LSTM) setup and time restricted
attention mechanisms [12] which enables the DNN to be more
attentive to emotionally sensitive portions of the speech. We
use such time restricted attention layers with both LSTM and
TDNN-LSTM setup and we observe that attention improves the
accuracy significantly in both of these setups as well as helps re-
ducing confusions among individual categories. Finally, we ex-
periment statistics extraction layers which was previously used
with the xvector setup of speaker and language identification
[6, 13, 14]. We experiment all these temporal modeling setups
individually with the frequency domain and time domain raw
waveform front end and observe the best results with TDNN-
LSTM-attention setup with time domain raw waveform front
end.

All our results have been reported on the categorical emo-
tion identification problem of Interactive Emotional Motion
Capture IEMOCAP) database [15]. We design a basline DNN
setup with TDNN layers using a high resolution 23-dimensional
mel frequency cepstral coefficients (MFCC). Experimental re-
sults prove the improvement obtained from the proposed raw
waveform based DNN setups which learn features within the
network over MFCC based DNN setup where hard coded fea-
tures are used. We also experiment separately with time and
frequency domain data driven filter learning approaches in the
raw waveform setup. We also include a few intermediate exper-
imental comparison regarding DNN training time and decode
time dependencies on seeing more or less context. We find such
dependencies plays a very critical role for emotion identification
task. In our best DNN setup we observe 8.31% improvement in
terms of weighted accuracy (WA) and 4.37% improvement in
terms unweighted accuracy (UA) over 257-dimensional magni-



tude FFT vectors based DNN setup reported in [4].

The rest of the paper is organized as follows. Details of
baseline MFCC based DNN and raw waveform based feature
extraction front end is described in Section 2. Section 3 pro-
vides experimental details on temporal modeling using DNN,
optimization and analysis of results. Conclusions are presented
in Section 4.

2. Feature extraction in emotion
identification

Here we describe the baseline MFCC based DNN setup and two
raw waveform feature extraction front end setups for emotion
identification task. Table 1 represents the results obtained from
all three experiments. The neural network setup used in all these
experiments are explained in details in Section 3.2.1.

Most speech systems use short term hand-crafted spectral
and cepstral features based on fixed filters, such as MFCC or
Mel filter-banks. In the first experiment, we use 23-dimensional
MFCC features as input to DNN.

However using fixed filter may not be the most appropriate
for final objective of minimizing emotion states classification
error. In the next experiment in row 2 of Table 1, we use direct-
from-signal setup described in [6] which attempts to learn filters
within the DNN. We refer to this as time domain raw waveform
front end in the rest of the description. The input frames are 40
ms long segments of raw waveform signal with 10 ms overlap.
This raw waveform front end has a 1 — d time convolution layer,
which operates on 40 ms raw signal with step size 1.25 ms and
the filter outputs are aggregated using two trainable Network-in-
Network (NIN) nonlinearity layers introduced in [6]. We also
used setup proposed in [16], where the signal first transformed
into frequency domain and a trainable filter bank layer, which is
modeled using linear transformation is jointly trained with rest
of the network.

We observe that using direct-from-signal setup, we are able
to improve the performance significantly compared to the base-
line MFCC. We also observe that results of time domain raw
waveform front end is better than learning feature from fre-
quency domain. We need to do more experiments using com-
plex domain filter learning to model phase information, which
can be useful in learning emotion states. We use time domain
feature extraction block in all results reported here after.

Table 1: Effect of different feature extraction methods

Feature extraction method WA

MFCC 59.9
Time-domain 65.5
Frequency-domain 63.4

3. Experimental Details and Results

This section describes the experimental details and results. All
our experiments are done using Kaldi toolkit [17]. All DNN
based emotion identification setups described in this section
have two common structures as shown in Fig 1 (a) and (b).
The initial block contains raw waveform front end layers as de-
scribed in Section 2. The temporal modeling layers are either
TDNN or LSTM or a combination of the two along with atten-
tion layer. We use statistics pooling layer before softmax layer
as in Fig 1(a) to get segment level emotion class output. DNN
set ups where we use attention layer in the temporal modeling
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Figure 1: Lay out of the proposed end to end DNNs for emotion
identification task

block, we use post processing in terms of averaging posteriors
over frames outside the network to get the segment level emo-
tion class output as in Fig 1(b).

We have used four emotional categories (neutral, angry, sad
and happy) from the Interactive Emotional Dyadic Motion Cap-
ture IEMOCAP) database [15]. The database consists of about
12 hours of audiovisual data (speech, video, facial motion cap-
ture) from five mixed gender pairs of male and female actors,
at two recording scenarios: scripted and improvised speech. It
is organized in five sessions, four of which are used for train-
ing and remaining one is used for testing. Each wave file has
segment level emotion category label annotated by human an-
notators.

The performance of the emotion identification DNNs are
reported using two parameters, weighted accuracy (WA) which
is the overall classification accuracy and unweighted accuracy
(UA) which is the average recall over the emotion categories.

3.1. Data perturbation

To increase the amount of data in the training set we perform
data augmentation by means of amplitude and speed perturba-
tion. For each speech signal 10 different amplitude modulated
versions are created initially. Speed perturbation [18] is per-
formed on the amplitude modulated signals with speed factors
0.9, 1.0 and 1.1. Effect of data perturbation on emotion identi-
fication task can be seen in Table 2.

Table 2: Effect of data perturbation on emotion identification
on our best setup without tuning decode time parameters

Perturbation WA UA
No 60.27 48.84
Yes 66.07 57.215

3.2. Modeling long temporal context

Deep neural network is trained to classify different emotion
states and training examples consists of variable length chunks
of speech features with a single emotion state label. We use
softmax layer at the end of network to give the network free-
dom to model any distribution over output and each emotion
state is modeled as a separate output class.

One of the main issues in predicting emotion state is that
the emotion cues can not be easily estimated over small span
of time and we need to preserve the temporal context or use
long examples to estimate emotional state of speakers. In this
section, we compare different approaches to model temporal



context. We use TDNN architecture which models long term
temporal dependencies in models described in Section 3.2.1
through Section 3.2.3. One disadvantage with temporal model-
ing using TDNN is the linear increase in parameters and compu-
tation with increase in temporal context and non-uniform sub-
sampling method helps to mitigate this issue. We also use only
LSTM layers with and without attention for temporal modeling
in recurrent way as described in Section 3.2.4.

Table 3: Effect of long temporal modeling layers

Temporal Modeling WA UA

TDNN-Statistics Pooling  65.5 55.3
TDNN-LSTM 59.5 564
TDNN-LSTM-Attention  66.3  60.3
LSTM 599 537
LSTM-Attention 634 562

3.2.1. Statistic pooling layer

We use TDNN layer as temporal convolution in this setup and
the context used in TDNN layer are similar to setup in [14].
The statistic pooling layer [6, 14] used in this setup, which ag-
gregates all available frame level inputs for intermediate layer
in the network and outputs their mean and standard deviation.
This layer operates on the entire segment and the mean and stan-
dard deviation are concatenated together and passed through
feed forward layer and finally a softmax layer applied on them.
Despite TDNN-LSTM setup, we use single emotion state label
for whole example chunk in this setup and the result is reported
in row 1 of Table 3. One disadvantage with this setup is that the
speech and non-speech frame weights are similar in computing
the mean and standard deviation in statistic pooling layer and
the error is back-propagated uniformly from this layer across
all time frames. This requires to use energy based SAD to fil-
ter out non-speech frames and not filtering non-speech frames
results in large degradation in this setup. This issue is solved us-
ing TDNN-LSTM-attention setup (Section 3.2.3) and the non-
speech frames are not removed in this setup. Having multiple
labels per chunk in the set up of Section 3.2.3 results in back-
propagating the error through frames for example chunk more
frequently.

3.2.2. TDNN-LSTM

In this setup, we use temporal convolution in the form of TDNN
layers along with LSTM layers. We use interleaving of temporal
convolution with unidirectional LSTM, which reported to out-
perform bidirectional LSTM [19]. We use per-frame objective,
where all frames has same emotion state label for each utter-
ance. We use higher frame rate at lower layers of LSTM and
TDNN layer in the network and we decrease layer frame rate
with layer depth. The layer wise context of temporal modeling
block is similar to config 1 of Table 4 except that this set up
does not have an attention layer. The results of this set up is
shown in the row 2 of Table 3.

3.2.3. TDNN-LSTM with time-restricted attention

We exploit time-restricted self-attention mechanism, where the
input and output sequence lengths are the same and it attends
at particular frame only sees input from a limited number of
frames to the left and right. Time-restricted attention layer [12]
is used as the last layer along with TDNN and unidirectional

LSTM layer. The architecture of TDNN-LSTM-attention set
up contains interleaving TDNNs and LSTMs with an attention
layer after the last LSTM layer. The layer wise context of tem-
poral modeling block of this set up is shown in config 1 of
Table 4. The dimensions of projection and the recurrence are
one quarter the cell dimension. We found 128 cell dimension
optimal for the current emotion identification task and with the
recurrence of dimension 32 and the output of LSTM of dimen-
sion 64. The LSTMs operates with a recurrence that spans 3
time steps. The attention layer used has 12 heads, a context of
[—5, 2], a key-dimension of 40 and value dimension of 60. In
this setup we use per frame dropout using the dropout schedule
method described in [20] where entire vector is forced to be zero
or one. The dropout schedule is expressed as a piece wise lin-
ear function on the interval [0, 1], where f(0) gives the dropout
proportion at the start of training and f(1) gives the dropout
proportion after seeing all the data. A dropout schedule of the
form 0, 0@0.20, p@0.5,0@0.75, 0 is used in this setup, where
pis 0.3 in the results reported here. Thus, the dropout probabil-
ity is 0 at f(0), 0 at £(0.2), 0.3 at f(0.5), 0 at £(0.75) and O
at f(1). In this set up we average frame posteriors outside the
network to get an segment level aggregate from the frame level
posteriors. The performance of this set up is shown in row 3 of
Table 3. We give some extra left context at the time of decod-
ing which provides flexibility to the network regarding number
of frames it sees in addition to what was provided during train-
ing and we evaluate the model several times to tune this length
of decode time context. We also observe improvement by us-
ing a longer training chunk using fixed length examples during
training. Details of fixed length versus variable length training
example experiments are reported in Section 3.3.

Table 4: Layer wise context of temporal modeling block for
TDNN-LSTMP-attention set up

Configl Config2

Layer | Context Layer-type Context Layer-type
I [[-1,0,1] TDNN [-1,0,1,2] TDNN
2 [0] LSTM! [-3,0,3,6] TDNN
3 |[-3,0,3] TDNN [0] LSTM*
4 [[-3,0,3] TDNN [-6,0,6,12] TDNN
5 [0] LSTM! [0] LSTM?
6 |[-3,0,3] TDNN |[-12,0,12,24] TDNN
7 |[-3,0,3] TDNN [-5,2] Attention
8 [0] LSTM! [-12,0,12] TDNN
9 [-5,2] Attention

LSTM': delay time=-3
LSTM?: delay time=-6

3.2.4. LSTM with and without time restricted attention

We use three unidirectional LSTM layers in this set up with a
cell dimension 128 and recurrent and non recurrent projection
dimension of 32. In a prior work on language identification
task [21] it was suggested we perform pooling over time recur-
rent layer to reduce redundancy. We experiment using a max
pooling layer after the last LSTM layer and observe improve-
ment in the accuracy. A comparison of results of LSTM with
and without time pooling is shown in Table 5. We also add time
restricted attention on this LSTM only set up. We observe sig-
nificant improvement using time restricted attention layer as a
final layer in the LSTM only setup as shown in the row 4 and
5 of Table 3. We use similar dropout schedule in this set up as



described in Section 3.2.3.

Table 5: Effect of time pooling in the LSTM setup

Temporal Modeling WA UA
LSTM 545 489
LSTM with max pooling 59.9 53.7

3.3. Variable-length vs. fixed-length training

The training and test utterances used in our emotion identifica-
tion setup have variable lengths in range of 0.6 to 10 seconds
and we need high accuracy on short segments during test time.
It is challenging to get utterance-level representation, which is
normalized over different length. It is important to minimize
network sensitivity to speech duration. One solution is to train
the network on chunks of different durations. In this section, we
investigate the effect of training using variable length chunks,
where the output is generated from the entire utterance if it is
shorter than 6 second and compare the results with dividing the
utterance into fixed length chunks and randomize chunks and
use them for training. Table 6 presents the results using mod-
els trained on fixed and variable-length examples. The model
configuration used in all experiments are described in Table 4.

In the experiment in row 1, the length of example chunks
are varied from 1 to 6 seconds and the entire utterance is used
as example if it is shorter than 6 seconds. Size of mini-batches
are a function of example length (e.g. mini-batch sizes used for
examples with length 100 and 200 are 128 and 64.) and total
number of frames are almost equal in different mini-batches.
The network configuration, C'on fig2, is used in this experi-
ment that is described in Table 4. The use of future context
information in unidirectional LSTM is accomplished using de-
layed prediction of the output label. We use delay time 3 and 6
for LSTM layers in our experiments. We use effective tempo-
ral context and decay time for LSTM layer and it helps to get
generalized to unseen sequence length and this is equivalent to
maximum number of frames that can be remembered via LSTM
layer. We use decay time 100 frames in this experiments and the
error is back-propagated through 100 effective frames. We use
larger decay time in this experiment to remember longer frames
for long example chunks. The network learns emotion states
on longer chunks more easily and the frame level cross entropy
objectives improved faster using variable length utterances and
the model converges within 30 epochs.

In the experiments in row 2, we used fixed length chunk
with 50 frames and the network is trained for same number of
epochs. As expected, it is harder to learn emotion states over
0.5 seconds and the network converges slower and it needs to
train for longer time. The interesting point about this setup
is higher randomization. Since long chunks in variable length
setup is segmented into subsegments with smaller size (e.g. 600
frames are segmented into 6 subsegments with 100 frames.) and
the network use these subsegments randomly in different mini-
batches during training, which results in more randomness dur-
ing training and it can help for better convergence in SGD and it
can be the reason for improvement in accuracy for fixed chunk
length setup.

The results in row 3 and 4 are trained on fixed chunks with
length 50 and 100 frames respectively and the training epochs
are increased to 100. The result shows that, the network needs
longer training time to learn emotion states using fixed length
chunks. The results reported within parenthesis in row 3 and 4

Table 6: Effect of training example chunk length. The numbers
inside parenthesis are results using looped decoding.(*training
without dropout)

chunk length epoch WA UA
100 — 6007 30 65 53.0
502 30 60.78 53.93
502 100 66.4 (67.2) 60.3 (58.7)
100 — 600% 100 69.3 (64.43) 58.4 (53.2)
1002 100  70.1 (66.8) (*56.49)  60.7(58)
2002 100 68.22 (65.32)  57.77 (54.9)

1: Config?2 is used in this setup.
2: Configl is used in this setup.

are the weighed accuracy obtained by providing an effectively
unlimited left context during decode time. It means the net-
work is allowed to reuse hidden state activations from previ-
ously computed chunk. As can be seen from the table unlimited
left context helps only with smaller training chunk. We also re-
evaluate the best set up without using dropout and the result is
reported within parenthesis (as *) of row 5 of the Table 6.

3.4. Summary of findings

In this work we propose to use raw speech waveform based end
to end DNN for categorical emotion identification. We describe
experimental results in two parts: effect of feature extraction
front end and long temporal context modeling. In the raw wave-
form based DNN set up, we use 1-d time convolution layer and
two NIN layers and we observe 4-5% improvement compared
to MFCC as shown in Table 1. The second part of the exper-
imental work is centered around long temporal context mod-
eling. We compare five different set ups for temporal model-
ing namely TDNN with statistics pooling layer, TDNN-LSTM,
TDNN-LSTM-attention, LSTM and LSTM-attention set ups.
Here, we also investigated different ways to aggregate infor-
mation over the duration of an utterance. We tried approaches
with a single label per utterance on time aggregation inside the
network and approaches with a label per frame. We observe
TDNN-LSTM-attention which is our deepest set up with 12
layers (including both feature extraction and temporal model-
ing) gives best WA and UA of 66.4% and 60.3 % respectively.
In this set up we use separate label per frame. We also experi-
ment with variable and fixed length examples with this TDNN-
LSTM-attention set up as described Section 3.3. The WA and
UA improved further to 70.1% and 60.7% respectively when
we use large chunk in fixed length example trainings. Our re-
sults outperforms previously reported results [4, 5] on the same
emotion identification problem.

4. Conclusion

We describe experimental results obtained while designing end
to end DNN for categorical emotion identification task. We
design raw waveform front end layers which attempts to learn
emotion specific features within the network to optimize emo-
tion identification objective. We also experiment several DNN
architecture for long temporal context modeling to capture emo-
tion cues lies in the long span of speech. We observe that
TDNN-LSTM-attention set up while trained with fixed length
examples with longer chunk of 1 second duration outperforms
all other set ups. In our future work we plan to investigate emo-
tion identification in multi- dimensional space.
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