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ABSTRACT

Self-attention — an attention mechanism where the input and
output sequence lengths are the same — has recently been suc-
cessfully applied to machine translation, caption generation,
and phoneme recognition. In this paper we apply a restricted
self-attention mechanism (with multiple heads) to speech
recognition. By “restricted” we mean that the mechanism at
a particular frame only sees input from a limited number of
frames to the left and right. Restricting the context makes it
easier to encode the position of the input — we use a 1-hot
encoding of the frame offset. We try introducing attention
layers into TDNN architectures, and replacing LSTM layers
with attention layers in TDNN+LSTM architectures. We
show experiments on a number of ASR setups. We observe
improvements compared to the TDNN and TDNN+LSTM
baselines. Attention layers are also faster than LSTM layers
in test time, since they lack recurrence.

Index Terms— ASR, attention, lattice-free MMI, neural
network, LSTM

1. INTRODUCTION

Attention-based models have recently become popular as they
have been successfully applied to a variety of tasks such as
machine translation [1], caption generation [2], and phoneme
recognition [3]. However, they have been less successful
when used for large vocabulary speech recognition [4, 5].

Attention-based models are usually used with encoder-
decoder structures, where an encoder neural network maps
the variable-length input sequence (e.g. a sequence of speech
frames) into a fixed-size vector, and a decoder network -
which takes this vector as input - generates the sequence of
output labels using an attention mechanism that focuses on
the relevant part of the input at each time step.

Recently, a new self-attention layer was proposed in [6],
and was successfully used for neural machine translation.
This layer has multiple heads which can jointly attend to
different subspaces of the input representation and uses dot-
product as the attention function.

This work was partially supported by DARPA LORELEI Grant No
HRO0011-15-2-0024 and NSF Grant No CRI-1513128.

In the work presented here, we adopt that self-attention
layer in a time-restricted fashion, which is more suitable
for speech recognition, where the input sequence consists
of speech frames and can be considerably long. Previously
time-restricted (or local) attention has been used by [7] in the
context of machine translation. In that work, for each time
step, the center of local attention is predicted using a weight
matrix, but in our case, the input and output sequences have
the same length, therefore we can safely assume that the cen-
ter of attention is the current time. In addition, similar to [6],
our attention mechanism is soft which means it can jointly
attend to different points in time with different weights. This
is different from hard attention in which the network attends
entirely to a single point in time [2].

We use this time-restricted self-attention layer in our
state-of-the-art lattice-free MMI (maximum mutual infor-
mation) models [8] to further improve their performance in
large-scale speech recognition tasks. The two common neu-
ral network structures that we use with LF-MMI are TDNN
(time-delay neural network) and TDNN-LSTM which has
interleaving TDNN and projected Long Short-Term Memory
layers [9][10]. While the TDNN-LSTM setup achieves better
results, the TDNN setup is significantly faster and has a re-
duced latency for online decoding. We use our time-restricted
attention layer in both TDNN and TDNN-LSTM structures
and show through experiments that it can improve the per-
formance in both setups as well as speed up decoding in the
TDNN-LSTM setup.

This is not “attention-based speech recognition”— we are
not using attention to replace the left-to-right alignment of the
HMM. It is simply an alternative to TDNN and LSTM layers
in our model topology.

The rest of this paper is organized as follows. Section 2
describes the proposed self-attention layer in details. The ex-
perimental setup is explained in Section 3. Section 4 presents
the experiments and results. Finally, the conclusions are pre-
sented in Section 5.

2. TIME-RESTRICTED SELF-ATTENTION LAYER

Our proposed time-restricted attention layer is comprised of 4 com-
ponents as shown in Figure 1. All the trainable parameters are in the
first component, which is an affine component. After the affine com-



ponent, we have the attention nonlinearity component, and finally, a
ReLU nonlinearity component followed by batch normalization [11]
(without the trainable offset and scale). This structure is equivalent
to the original multi-head attention in [6] but the nonlinearity and the
trainable parameters are separated for efficient implementation. The
actual attention mechanism takes place in the attention component,
as shown in Figure 2.

Assuming the one-head case for simplicity, the attention compo-
nent interprets its input &+ as being three things appended together:
q: and k¢ and v¢ which are the query, key and value respectively.
The output y; is a weighted sum (over time) of the values v, where
the weights are determined by dot products of the queries and the
keys (normalized via softmax). This gives us:

t+R

Yt = Z Ct(T)'Ut (D

T=t—L

where ¢;(7) = exp(qs + kr)/Z: where Z; ensures > _c;(7) = 1.
In other words, the attention weight vector c¢ is the softmax of a
vector of key-query dot products.

2.1. Extension with positional encoding

In the formulation above, the model does not "’know’ the relative po-
sition in time of the key and query. We introduce a positional encod-
ing mechanism on the keys and values, as follows. Suppose x is an
arbitrary vector, then let extend(x, 7,t) be x extended with a one-
hot encoding of the relative position of 7 versus ¢t. The dimension
of this expression is greater than the dimension of x by L +1 4+ R
which is the number of possible relative positions, and it extends x
by adding a vector which is all zeros except there is a one in position
7 + L — t (assuming zero-based indexing). We change the above
formulation by writing instead

t+R
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so now the output dimension is greater by L + 1+ R than the dimen-
sion of v, and the dimension of the queries is greater by L + 1+ R
than the dimension of the keys.

2.2. Extension to multiple heads

Extension to more heads is straightforward because the heads op-
erate independently. Supposing there are 10 heads, the input and
output would be interpreted as 10 equal-sized blocks, with the com-
putation described above happening within each block. This is illus-
trated in Figure 2b.

For left and right contexts that are not available, we just let the
input to the attention component (i.e. the output of the preceding
affine component) be zero.

3. EXPERIMENTAL SETUP

For running the experiments, we use the Kaldi speech recognition
toolkit [12]. This toolkit is open-source and the source codes re-
lated to this study are available online for reproducing the results.
Experiments are done on four corpora: Wall street Journal [13],
TED-LIUM [14], Switchboard [15] and AMI. For Switchboard, we
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Fig. 1. The attention layer and the comprising components.

report results on the full HUBS ’00 evaluation set and its “switch-
board” and “CallHome” subsets, which are indicated in the results
by “eval/fullset”, “eval/swbd” and “eval/callhm” respectively. In
the final results, we also report word error rates on the RT03 test
set (LDC2007S10). The notation we use to show left/right context
for the self-attention layer is [—left, right]. For example, context
[—15, 6] means the attention layer has a left context of 15, and a right
context of 6.

4. EXPERIMENTS

In the following subsections, we try to investigate different aspects of
the attention layer. In particular, we investigate the effect of the num-
ber of heads, key/value dimension and the size of the restricted time
context. In these experiments, we only report results on Switchboard
and/or TED-LIUM using the TDNN setup. In Section 4.7, however,
we report results for all four databases in TDNN and TDNN-LSTM
setups using a consistent configuration for the attention layer. In all
the ASR experiments, we only report word error rates. Also, in all
the tables, by “Baseline” we mean the case where no attention layer
is used. We also report some preliminary experimental results for
recurrent neural network language modeling.

4.1. Language modeling

As a preliminary experiment (to the main ASR experiments), we ap-
plied the proposed attention layer in the Kaldi based RNNLM setup
[16]. Table 1 shows the perplexity improvements we obtained by re-
placing a TDNN layer with an attention layer, which has 20 heads,
a key/value dimension of 40/80, and a left context of 15. The right
context is 0 to avoid seeing the future.

Model AMI Switchboard WSJ
3 LSTM layers 722 48.9 56.3
1 LSTM + 1 TDNN + 1 LSTM 70.8 47.5 55.1

1 LSTM + 1 self-attention + 1 LSTM 68 46.5 53.5

Table 1. Perplexities of different models on test data

4.2. Location of attention layer

In the first set of experiments, we simply replaced one hidden layer
with an attention layer in our TDNN setup. The resulting word er-
ror rates appear in Table 2. The attention layer used has 15 heads,
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Fig. 2. (a) A single-head attention component. Left and right context sizes are 2 and 1 respectfully. For clarity, positional-encoding and the
softmax (which is applied to the dot-products) are not shown. (b) A multi-head attention component using single-head attention blocks. K,
Q, and V respectively mean key, query, and value.

Database Testset Baseline L2 L4 L6 L7
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Table 2. Effect of location of the attention layer in the network. L £s5 210 )
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Total context

Database  Testset Baseline 1319 25 31 37 " , #heads=15 context=[-45.45]
Switchboard eval/fullset 15.0 14.8 14.6 14.5 14.6 14.7 5 6, 08
eval/callhm 199 19.7 19.4 19.3 19.3 19.3 20 Deg 10 o6

TED-LIUM dev 86 84 83 84 86 84 = = )
test 89 87 87 8.6 87 87 8 048 04
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Table 3. Effect of symmetric context size. o

10-8 -6 4 20 2 4 -453627.189 0 9 18273645
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a context of [—15, 6] and a key-dimension of 40. The value dimen-
sion is 80 for Switchboard and 60 for the smaller TED-LIUM task.
It can be seen that the attention layer is more effective when used
towards the end of the network. We also tried (not shown) using 2
or more attention layers, but it degraded the results. In the rest of the
experiments, we always use a single attention layer near the end of
the network.

Fig. 3. Attention weight vector c; for different attention configura-
tions. The horizontal axis shows time.

4.4. Number of heads

Table 4 shows word error rates for different number of heads in the
self-attention layer, when the key/value dimensions are adjusted to
yield the same total number of parameters in the network. The key
to value ratio is 0.5 in all the experiments. We also include results
4.3. Context for when the key/value dimensions are fixed to 30/60.
Table 3 shows results of using symmetric contexts with different to-

. . 4.5. Key vs. value dimension
tal sizes. The results are not completely conclusive, but suggest that

too wide or too narrow a context might degrade the results. Other
experiments (not shown) showed that using different left vs. right
context sizes did not make any significant difference. As a result, we
use a context of [—15, 6] in the rest of the experiments since it leads
to a smaller latency for online decoding.

Finally, we investigated the impact of the relative dimension of
the value and the key. In this experiment, we change the ratio of
key/value dimension, while keeping their sum fixed. As a result, the
total number of parameters are the same in all cases. The results are
presented in Table 5. The results suggest that a key to value ratio of



Number of heads

Testset Baseline 10 15 30 60 150

adjusted eval/fullset 15.0 14.7 14.6 14.7 14.5 14.7
key/value eval/callhm 19.9 19.6 19.3 19.4 19.1 19.5
dim rt03 18.1 17.8 17.8 17.7 17.8 17.7
fixed eval/fullset 150 14.6 14.6 14.5 14.6 14.8
key/value eval/callhm  19.9 19.4 19.2 19.3 19.1 19.6
dim rt03 18.1 175 17.7 17.5 174 17.6

Table 4. Effect of number of heads on Switchboard.

key-dim/value-dim

Baseline 20/80 40/60 50/50 60/40 80/20

Switchbonrg SY/callim 199 194 1927 196 194 195
WHCRDOA o v al/fullset 150 14.6 14.6 14.8 14.8 14.8

dev 86 85 83 84 84 84
TED-LIUM test 8.9 86 86 86 88 88

Table 5. Impact of key/value dimension.

around 0.5 is slightly better than other ratios.

4.6. Self-attention analysis

Figure 3 shows the attention weight vector c; averaged over a few
mini-batches during training for different heads, where the heads
are sorted w.r.t the 1°% weight (i.e. leftmost input in time). The
plot is shown for different attention configurations all having con-
text [—15, 6] except 3d which has a wide context. By looking at
3{a,b}, we can see the weights for the first and last time-index are
larger which shows higher attention to these time indexes. Figure 3¢
shows the attention is more uniform across the input time-indexes
when used towards the beginning of the network (i.e. layer 2).

Figure 4 shows the aforementioned weight vector averaged over
all heads when the context is [—45,45]. It can be seen that frames
further away in time are less important, which provides some justifi-
cation for the choice to restrict the time context that the mechanism
can see.
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Fig. 4. Weight vector c; averaged over all heads for an attention
layer with 150 heads and context [—45, 45].
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Table 6. Final TDNN results.

TDNN-LSTM+
TDNN-LSTM Attention
*
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Table 7. Final TDNN-LSTM results.

4.7. Final Results

Based on our findings in the previous subsections, we decided on
a consistent configuration for the attention layer to test on various
databases. This attention layer has 15 heads, a context of [—15, 6],
and a key-dimension of 40. The value dimension is adjusted accord-
ing to the task size to a value in the range [50, 80].

Results for using attention with TDNNSs are presented in Table 6.
Results for using attention with TDNN-LSTMs are shown in Table
7. In these experiments, we replaced the last LSTM layer with one
attention layer. On average, the real-time factor for decoding the
TDNN-LSTM models is 1.5 while it is 1.2 for TDNN-LSTM with
attention.

5. CONCLUSION

In this study, we introduced a time-restricted self-attention mecha-
nism suitable for ASR and used it in our state-of-the-art LF-MMI
models as a new layer, replacing a TDNN or LSTM layer. Through
experiments on 4 different databases, we showed that using a single
self-attention layer towards the end of the network can improve the
WER by 0.2-0.6 in our TDNN and TDNN-LSTM setups (except on
WSJ). In TDNN-LSTMs, it can also speed up decoding by 20%.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

(14]

6. REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio,
“Neural machine translation by jointly learning to align and
translate,” arXiv preprint arXiv:1409.0473, 2014.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron
Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua Ben-
gio, “Show, attend and tell: Neural image caption generation
with visual attention,” in International Conference on Machine
Learning, 2015, pp. 2048-2057.

Jan Chorowski, Dzmitry Bahdanau, Kyunghyun Cho, and
Yoshua Bengio, “End-to-end continuous speech recognition
using attention-based recurrent nn: first results,” arXiv preprint
arXiv:1412.1602, 2014.

Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk,
Kyunghyun Cho, and Yoshua Bengio, “Attention-based mod-
els for speech recognition,” in Advances in Neural Information
Processing Systems, 2015, pp. 577-585.

Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Phile-
mon Brakel, and Yoshua Bengio, “End-to-end attention-based
large vocabulary speech recognition,” in Acoustics, Speech and
Signal Processing (ICASSP), 2016 IEEE International Confer-
ence on. IEEE, 2016, pp. 4945-4949.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Il-
lia Polosukhin, “Attention is all you need,” arXiv preprint
arXiv:1706.03762, 2017.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning,
“Effective approaches to attention-based neural machine trans-
lation,” arXiv preprint arXiv:1508.04025, 2015.

Daniel Povey, Vijayaditya Peddinti, Daniel Galvez, Pegah
Ghahremani, Vimal Manohar, Xingyu Na, Yiming Wang, and
Sanjeev Khudanpur, “Purely sequence-trained neural networks
for asr based on lattice-free mmi.,” in INTERSPEECH, 2016,
pp. 2751-2755.

Hagim Sak, Andrew Senior, and Frangoise Beaufays, “Long
short-term memory recurrent neural network architectures for
large scale acoustic modeling,” in Fifteenth Annual Conference
of the International Speech Communication Association, 2014.

Vijayaditya Peddinti, Yiming Wang, Daniel Povey, and San-
jeev Khudanpur, “Low latency modeling of temporal contexts,”
IEEE Signal Processing Letters (submitted), 2017.

Sergey loffe and Christian Szegedy, ‘“Batch normalization: Ac-
celerating deep network training by reducing internal covari-
ate shift,” in International Conference on Machine Learning,
2015, pp. 448-456.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Bur-
get, Ondrej Glembek, Nagendra Goel, Mirko Hannemann, Petr
Motlicek, Yanmin Qian, Petr Schwarz, et al., “The kaldi speech
recognition toolkit,” in IEEE 2011 workshop on automatic
speech recognition and understanding. IEEE Signal Process-
ing Society, 2011, number EPFL-CONF-192584.

Douglas B Paul and Janet M Baker, “The design for the wall
street journal-based csr corpus,” in Proceedings of the work-
shop on Speech and Natural Language. Association for Com-
putational Linguistics, 1992, pp. 357-362.

Anthony Rousseau, Paul Deléglise, and Yannick Esteve, “En-
hancing the ted-lium corpus with selected data for language
modeling and more ted talks.,” in LREC, 2014, pp. 3935-3939.

[15]

[16]

John J Godfrey, Edward C Holliman, and Jane McDaniel,
“Switchboard: Telephone speech corpus for research and de-
velopment,” in Acoustics, Speech, and Signal Processing,
1992. ICASSP-92., 1992 IEEE International Conference on.
IEEE, 1992, vol. 1, pp. 517-520.

Hainan Xu, Ke Li, Yiming Wang, Jian Wang, Shiyin Kang, Xie
Chen, Daniel Povey, and Sanjeev Khudanpur, “Kaldi rnnlm, an
importance-sampling based neural network language modeling
toolkit,” in Acoustics, Speech and Signal Processing (ICASSP),
2017 IEEE International Conference on. IEEE, 2017, submit-
ted.



