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Low latency acoustic modeling using temporal
convolution and LSTMs

Vijayaditya Peddinti∗, Yiming Wang, Daniel Povey, Sanjeev Khudanpur

Abstract—Bidirectional long short term memory (BLSTM)
acoustic models provide significant word error rate reduction
compared to their unidirectional counterpart, as they model both
the past and future temporal contexts. However it is non-trivial to
deploy bidirectional acoustic models for online speech recognition
due to an increase in latency. In this paper we propose the
use of temporal convolution, in the form of time-delay neural
network (TDNN) layers, along with unidirectional LSTM layers
to limit the latency to 200 ms. This architecture has been shown
to outperform the state-of-the-art low frame rate (LFR) BLSTM
models. We further improve these LFR BLSTM acoustic models
by operating them at higher frame rates at lower layers and show
that the proposed model performs similar to these mixed frame
rate (MFR) BLSTMs. We present results on the Switchboard
300 Hr LVCSR task and the AMI LVCSR task, in the three
microphone conditions.

Index Terms—time delay neural networks, recurrent neural
networks, LSTM, acoustic model

I. INTRODUCTION

The use of future context information is typically shown
to be helpful for acoustic modeling. This context is pro-
vided in feed-forward neural networks (FFNNs) by splicing
a fixed set of future frames in the input representation [1]
or through temporal convolution over the future context [2].
In unidirectional LSTM acoustic models this is accomplished
using a delayed prediction of the output labels [3], while in
bidirectional LSTMs this is accomplished by processing the
data in the backward direction using a separate LSTM layer
[4], [5], [6].

Among the LSTM acoustic models, including their variants
like highway LSTM networks [7], the bidirectional versions
have been shown to outperform the unidirectional versions by
a large margin [8], [7]. However the latency of the bidirectional
models is significantly larger, making them unsuitable for
online speech recognition. To overcome this limitation chunk
based training and decoding schemes [8], [9], [10], [11] have
been previously investigated.

In this paper we propose interleaving of temporal convo-
lution, with unidirectional LSTM layers, for modeling the
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future temporal context. This model is shown to outperform
LFR-BLSTMs in two different LVCSR tasks, while enabling
online decoding with a maximum latency of 200 ms. We also
show that the model performs similar to the improved MFR-
BLSTMs, where a higher frame-rate is used at lower layers.

The paper is organized as follows : Section II presents the
prior work, Section III presents the motivation for this effort,
Section IV describes the proposed model, Section V describes
the experimental setup, Section VI presents the results and
finally the conclusion is presented in Section VII.

II. PRIOR WORK

The superior performance of BLSTM acoustic models has
motivated recent research efforts [10], [7], [12], [8] to make
them amenable for online decoding. A common characteristic
of these methods is the use of frame chunks in place of the
entire utterance, and they differ in the way the recurrent states
are initialized when processing these chunks.

Chen et al., [10] proposed the use of context-sensitive
chunks (CSC), where a fixed context of frames to the left
and right of the chunk is used to intialize the recurrent states
of the network. Zhang et al., [7] carried over the recurrent
states for the forward LSTM from previous chunks reducing
the computation on the left context. Xue et al., [12] proposed
the use of a feed-forward DNN to estimate the initial state of
the backward LSTMs, for a given chunk. They also proposed
the use of a simple RNN in place of an LSTM for the
backward direction. Zeyer et al., [8] proposed the use of
overlapping chunks, without additional chunk context, and
combining the posterior estimates from overlapping chunks.
In all these online variants inference is restricted to chunk-
level increments to amortize the computation cost of backward
LSTMs, which significantly increases the model latency.

In this paper we propose the use of temporal convolution for
modeling the future temporal context, to enable inference with
frame-level increments of audio. Combining convolution with
recurrent layers has been previously shown to be helpful for
acoustic modeling in [13], [14]. However the use of spectro-
temporal convolution restricts the placement of convolutional
layers to below the recurrent layers in [13]. In this work we
focus on temporal convolution which affords the exploration of
more combinations, including the interleaving of convolutional
and recurrent layers1. Temporal convolution was also used in
[14] but just above or below the recurrent layer stack.

1Recent experiments by Gaofeng Cheng have shown that combining
spectro-temporal convolution with the architectures proposed in this paper
could further improve the results [15]. This work is in progress.
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TABLE I
COMPARISON OF SUB-SAMPLED TDNN ARCHITECTURES ON THE 300 HR SWITCHBOARD LVCSR TASK

Model Layer-wise context Network WER (%)
context SWBD CHM Total

TDNN-A {-2,-1,0,1,2} {-1,2} {-3,3} {-7,2} {0} {0} {0} [-13, 9] 11.1 21.8 16.5
TDNN-B {-2,-1,0,1,2} {-1,2} {-3,0,3} {-3,0,3} {-3,0} {0} {0} [-12, 10] 10.5 21.9 16.3
TDNN-C {-2,-1,0,1,2} {-1,0,1} {-1,0,1} {-3,0,3} {-3,0,3} {-3,0} {0} [-13, 10] 10.3 20.7 15.5
TDNN-D {-1,0,1} {-1,0,1} {-1,0,1} {-3,0,3} {-3,0,3} {-3,0,3} {-3,0,3} [-15, 15] 9.6 19.9 14.8

∗ Please note that the overall temporal context of the neural network is kept similar, except in TDNN-D. There are 625 filters in each TDNN layer.
However due to the change in temporal convolution kernel context there is a slight increase in parameters as we move from TDNN-A to TDNN-D.

III. MOTIVATION

In this section we present a set of empirical results which
motivate the model proposed in this paper. We initially detail
the modeling of large temporal contexts using TDNNs and
compare their performance with (B)LSTMs. All these models
are trained using the LF-MMI cost function computed on 33
Hz outputs [16]. These results correspond to the Switchboard
(SWBD) and Call-Home (CHM) subsets of the Hub5’00 set
(LDC2002S09) and the 300 hr Switchboard LVCSR task.
Please see Section V for the experimental setup and neural
network hyper-parameters.

A. Sub-sampled TDNNs

Time-delay neural networks are effective in modeling long-
span temporal contexts [2]. However there is a linear increase
in parameters with increase in temporal context; and also
a linear increase in computation when training with frame
randomization. In the sub-sampled time-delay neural networks
[17] the issue of linear increase, both in parameters and
computation, is alleviated using a non-uniform sub-sampling
technique where the layer frame rate decreases with the layer
depth. This sub-sampled TDNN (TDNN-A), is the baseline
acoustic model in this paper.

Recently training with just sequence level cost functions has
been shown to be very effective for acoustic modeling [18],
[16]. In this scenario frame-shuffling is no longer applicable.
Thus the computation can be amortized over all the outputs in
the sequence and sub-sampled TDNNs can match the output
frame rate even at deeper layers.

In [18], [16] and [19] the authors have shown that lower
output frame rate models outperform conventional frame rate
models, while providing great savings in computation. They
propose the use of reduced frame rates of 25-33 Hz for the
neural network outputs. Hence we change the frame rate at all
the layers in the TDNN to match the output frame rate (33
Hz). This configuration is denoted TDNN-B.

Finally, we also explore the use of higher frame rate
(100 Hz) at the lower layers of the TDNN. We restrict the
higher frame rates to the lower layers as this preserves the
computational efficiency; and as the gains were negligible
when increasing the frame rate even at the higher layers. This
TDNN is denoted TDNN-C. Finally we tuned the temporal
contexts of the TDNN layers (TDNN-D).

The configurations of the sub-sampled TDNNs described
above and their performance is shown in Table I. We specify
the TDNN architectures in terms of the splicing indices which

define the temporal convolution kernel input at each layer. e.g.
{-3,0,3} means that the input to the temporal convolution
at a given time step t is a spliced version of previous layer
outputs at times t-3, t, t+3. It can be seen that using
the higher frame rates at lower layers and tuning the temporal
contexts of the layers (TDNN-D) provides 10.3% relative gain
over the sub-sampled TDNNs proposed in [17] (TDNN-A) 2.

B. Comparison with LSTMs

We compare the performance of the best TDNN model
(TDNN-D) with stacked (B)LSTM models. These have three3

layers of (B)LSTM. These models are denoted LFR-LSTM
and LFR-BLSTM as all their layers operate at a low frame
rate (LFR) of 33 Hz similar to [18] and [19] .
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Fig. 1. Dependencies among activations at various layers and time-steps in
the stacked LSTM network with the lowest LSTM layer operating at 100 Hz

Based on our observations with TDNNs, we explored the
use of higher frame rate (100 Hz) at lower (B)LSTM layers.
This architecture is similar to the hierarchical subsampling
networks, proposed in [20] and more recently applied in [21]
and [22]. We denote these models as MFR-LSTM and MFR-
BLSTM as they use a mixed frame rate (MFR) across layers.
Figure 1 represents the computation in the MFR-LSTM.

Table II compares the models discussed in this section with
the best TDNN model described in Section III-A. Firstly, it
can be seen that operating the lower LSTM layers at a higher

2Part of this improvement was already realized in [16].
3The depth and other hyper-parameters of the LSTM and BLSTM models

have been tuned. Further increase in depth leads to negligible improvements.
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TABLE II
PERFORMANCE COMPARISON OF TDNN, LSTM AND BLSTM ON THE

300 HR SWITCHBOARD LVCSR TASK

Model WER (%)
SWBD CHM Total

TDNN-D 9.6 19.9 14.8
LFR-LSTM 10.1 21.0 15.6
LFR-BLSTM 9.6 19.2 14.5
MFR-LSTM 9.9 19.7 14.8
MFR-BLSTM 9.0 18.1 13.6

frame rate is beneficial. It results in a relative improvement of
∼ 6% in BLSTM and ∼ 5% in LSTM. However the overall
computational complexity increases by 30% during inference
compared to the corresponding LFR models, for our input
sizes of interest. Operating even the higher (B)LSTM layers
at a higher frame rate did not lead to gains, while further
increasing the computational complexity.

Secondly, it can be seen that both the TDNN and LSTM
models perform worse than both the BLSTM models. The
superior performance of the bidirectional recurrent models
compared to their unidirectional counterparts can be attributed
to the modeling of the future context which could not be
matched even with the use of output delay in LSTMs (see
Section V for details of output delay). Thus to model the future
context in the LSTMs, we propose the use of TDNN layers.

IV. PROPOSED MODEL

In this section we detail the use of temporal convolution in
the recurrent neural networks, to model the future temporal
context. We explore three different ways of combining tem-
poral convolution and LSTMs viz.,

• Stacking LSTMs over TDNNs (TDNN-LSTM-A)
• Stacking TDNNs over LSTMs (TDNN-LSTM-B)
• Interleaving TDNNs and LSTMs (TDNN-LSTM-C)
Figure 2 represents the computation in the TDNN-LSTM-C

network. It can be seen that all the LSTM layers, which can
be computationally expensive, operate at the 33 Hz frame rate.

Further, to compare the benefits of performing temporal
convolution in BLSTM models, we also interleave temporal
convolution with the forward and backward LSTMs (TDNN-
BLSTM-A) or with forward and backward LSTM stack i.e.,
the BLSTM layer (TDNN-BLSTM-B).

As only the lower TDNN layers operate at a 100 Hz
frame rate in TDNN-LSTM-C and TDNN-BLSTM-A, we also
verify if additional gains can be had by operating even the
lowest recurrent layer at 100 Hz frame rate, similar to MFR-
(B)LSTM. These models are denoted as TDNN-LSTM-D and
TDNN-BLSTM-C, respectively.

V. EXPERIMENTAL SETUP

Experiments were conducted using the Kaldi toolkit [23].
We report the main set of results on 300 hour Switchboard
conversational telephone speech task. We perform phone-level
sequence training, without frame level pretraining, using the
lattice-free MMI objective [16] on outputs of frame rate 33
Hz. The experimental setup is same as the one described
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Fig. 2. Dependencies among activations in a stacked TDNN-LSTM network
with interleaved temporal convolutions. The convolution kernel input contexts
are on left and the layer-wise frame rates are on the right.

in [16]. We also present results on the AMI LVCSR task
[24], [25], [26], for the individual headset, single distant and
multiple distant microphone conditions (IHM, SDM, MDM).
This recipe is same as the one described in [27], where the
SDM and MDM LVCSR systems are trained with numerator
lattices generated from parallel IHM data. A salient difference
in the current setup compared to [16], [27] is the use of
a recurrence scaling factor (0.85) in the LSTM layers for
generalization to longer sequences than those seen during
training. This is of interest in our scenario as we train on fixed
length context-sensitive chunks (CSCs, [10]) in randomized
order, but decode with state saving across chunks to reduce
latency. This exposes the model to longer length sequences
during inference than those seen in training.

The cost function is computed using CSCs of width 1000−
1500 ms and left/right context of 400 ms. The chunk contexts
are further expanded to satisfy the context requirements of
TDNNs. The LSTMs are trained with an output delay of 50
ms4. We used chunk based decoding with similar chunk-width,
but we increased the chunk contexts to 500 ms5 as this reduced
WER.6

Model latency during inference: Latency is affected by
input context, chunk-width, chunk contexts and output delay.
Further each TDNN layer adds to the latency due its kernel
context. As the recurrent state of the forward LSTM can be
propagated across chunks, the chunk left context does not add
to the latency. Further with forward LSTMs chunk-width does
not add to latency, as we can perform inference in frame-
level increments. However when backward LSTMs are used
inference is performed in chunk-level increments to amortize
the backward LSTM cost over the entire chunk. Thus chunk-
width and chunk right context add to the latency in BLSTM
models.

4based on a selective search of values from 0-150 ms
5based on a grid search of values from 0-800 ms
6Scripts to reproduce experiments in this paper [28]
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TABLE III
PERFORMANCE COMPARISON OF VARIOUS MODELS IN THE 300 HR SWBD LVCSR TASK†

Model Architecture∗
Latency Matched Inference State-saving Inference

(ms) WER(%) RTF WER(%) RTFSWBD Total SWBD Total
TDNN-D T 100T 100T 100TTTT 150 9.6 14.8 0.8 9.6 14.8 0.9
LFR-LSTM LfLfLf 70 10.1 15.6 2.5 10.7 16.2 1.2
MFR-LSTM L100

f LfLf 70 9.9 14.8 2.7 10.2 15.3 1.8
TDNN-LSTM-A T 100T 100T 100TTTTLfLfLf 200 9.5 14.6 2.7 9.7 14.8 1.8
TDNN-LSTM-B L100

f L100
f L100

f T 100T 100T 100TTTT 200 9.4 14.3 4.0 9.3 14.3 2.3
TDNN-LSTM-C T 100T 100T 100LfTTLfTTLf 200 9.2 14.2 3.7 9.4 14.4 1.9
TDNN-LSTM-D T 100T 100T 100L100

f TTLfTTLf 200 9.0 13.9 4.8 9.4 14.4 2.4
LFR-BLSTM [Lf , Lb], [Lf , Lb], [Lf , Lb] 2020 9.6 14.5 4.7
MFR-BLSTM [L100

f , L100
b ][Lf , Lb][Lf , Lb] 2020 9.0 13.6 6.6

TDNN-BLSTM-A T 100T 100T 100[LfT, LbT ][LfT, LbT ][Lf , Lb] 2170 9.2 14.1 4.6
TDNN-BLSTM-B T 100T 100T 100[Lf , Lb]TT [Lf , Lb]TT [Lf , Lb] 2170 9.1 13.8 4.7
TDNN-BLSTM-C T 100T 100T 100[L100

f T 100, L100
b T 100][LfT, LbT ][Lf , Lb] 2130 9.0 13.8 9.6

∗
forward LSTM - Lf , backward LSTM - Lb, TDNN - T , default layer frame-rate - 33 Hz and other frame rates are specified in the super-script.
[., .] - layers which operate on the same input and whose outputs are appended e.g.BLSTM = [Lf , Lb].
Lf , Lb : cell size - 1024, recurrent and non-recurrent projections-256; TDNN filters/layer : in TDNN-LSTMs - 1024 and in TDNN-BLSTMs - 512
TDNN layer contexts are same as TDNN-D (see Table I)

† State-saving inference for BLSTMs is difficult to implement in our framework, so we do not present these results.

VI. RESULTS

In this section we provide a comparison of acoustic models
in the SWBD and AMI LVCSR tasks. Table III presents a
broader comparison of the acoustic models on the 300 Hr
Switchboard LVCSR task, and Table IV compares a subset of
models on the AMI-LVCSR task. Table V compares perfor-
mance of systems trained with and without recurrence scaling.

We perform decodes with two different posterior estimation
methods, Matched Inference where the state of the network for
a chunk is estimated using a chunk left context, similar to the
training; or State-saving Inference where the state is copied
from the final state in the previous chunk.

TABLE IV
PERFORMANCE COMPARISON IN THE AMI LVCSR TASK WITH MATCHED

INFERENCE‡

Model
WER (%)

IHM SDM MDM
Dev Eval Dev Eval Dev Eval

TDNN-D 21.7 22.1 39.9 43.9 36.6 40.1
LFR-BLSTM 21.0 20.9 38.8 42.0 35.4 38.4
MFR-BLSTM 20.6 20.3 37.4 40.5 34.5 37.3
TDNN-LSTM-C† 20.8 20.5 37.3 40.4 34.1 36.8
TDNN-BLSTM-A 20.7 20.7 37.0 40.4 34.2 36.6

† TDNN-LSTM-C has additional TDNN layers
‡ Parameters reduced compared to SWBD models

TABLE V
IMPACT OF RECURRENCE SCALE : 300 HR SWBD LVCSR TASK

Model
Total WER on Hub’00 (%)

Without scaling With scaling
MI SSI MI SSI

TDNN-LSTM-A 14.2 15.6 14.6 14.8
TDNN-LSTM-C 13.9 16.0 14.2 14.4
MFR-BLSTM 13.5 - 13.6 -

MI : Matched Inference SSI : State saving Inference

From Table III: TDNN-LSTMs B and C perform better
among A, B and C; while C has lower real-time factor (RTF).

From Tables III, IV and V: TDNN-LSTM-C performs similar
to the MFR-BLSTM in AMI task, but there is a difference
in performance in SWBD task which slightly reduces when
trained without recurrence scaling.

From Table III: Interleaving TDNNs with BLSTMs rather
than forward and backward LSTMs separately was better
(TDNN-BLSTM-A vs B); both these models perform better
than LFR-BLSTM. However there was no benefit compared
to MFR-BLSTM, in terms of performance, though RTFs are
lower than MFR-BLSTM.

Operating the lowest (B)LSTM layer in TDNN-(B)LSTMs
at 100 Hz, i.e., TDNN-LSTM-D and TDNN-BLSTM-C led to
performance gains with additional computational cost, when
compared to TDNN-LSTM-C and TDNN-BLSTM-A, respec-
tively.

In preliminary experiments we observed that using addi-
tional temporal context was beneficial for TDNN-LSTMs in all
three AMI tasks. This might be attributed to the fact that this
data is reverberated, at least for the SDM and MDM tasks. This
additional context was provided using an additional TDNN
layer between successive LSTM layers and this leads to 60
ms of additional latency for AMI models.

From Table V : It can be clearly seen that recurrence
scaling helps better generalize to longer sequence lengths i.e.,
for state-saving inference. We are currently exploring other
mechanisms to better generalize to chunk-widths not seen
during training. These include use of frame-level dropout of
recurrent states [29] with longer chunk-widths.

VII. CONCLUSION

In this paper we proposed interleaving of temporal convo-
lution with LSTM layers which was shown to be effective
for modeling of the future temporal context, while affording
low latency (200 ms) online inference. We showed that this
architecture not only performs better than the stacked LFR-
BLSTM network, but also performs similar to the superior
stacked MFR-BLSTM.
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