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Abstract
Speech recognition systems for irregularly-spelled languages
like English normally require hand-written pronunciations. In
this paper, we describe a system for automatically obtaining
pronunciations of words for which pronunciations are not avail-
able, but for which transcribed data exists. Our method inte-
grates information from the letter sequence and from the acous-
tic evidence. The novel aspect of the problem that we address is
the problem of how to prune entries from such a lexicon (since,
empirically, lexicons with too many entries do not tend to be
good for ASR performance). Experiments on various ASR tasks
show that, with the proposed framework, starting with an initial
lexicon of several thousand words, we are able to learn a lexicon
which performs close to a full expert lexicon in terms of WER
performance on test data, and is better than lexicons built using
G2P alone or with a pruning criterion based on pronunciation
probability.
Index Terms: speech recognition, pronunciation lexicon learn-
ing

1. Introduction
In the past few years, there has been an growing interest in
investigating acoustic data-driven lexicon learning for contin-
uous speech recognition, i.e. automatically obtaining pronun-
ciations of words for which pronunciations are not available ,
but for which transcribed acoustic data exists. In order to de-
velop ASR systems under limited lexicon resources, one so-
lution is to adopt a graphemic lexicon [1, 2] or acoustic unit
discovery methods [3, 4], which totally eliminate the expert ef-
forts for developing a phonetic pronunciation lexicon. In real
applications, however, a more common scenario is that we al-
ready have a phonetic inventory, and a small expert lexicon for
a specific language. Our work focuses on this case, i.e. given a
small expert lexicon, we want to derive pronunciations for Out-
of-Vocabulary (OOV) words, for which we know the text form
and have acoustic examples.

Given a small expert lexicon, the most straightforward way
to generate pronunciation candidates for OOV words is to train a
Grapheme-to-Phoneme (G2P) [5] model using the seed lexicon
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and apply it to these OOV words [6, 7, 8]. But for languages like
English, and for proper names and abbreviations, G2P does not
always give high quality pronunciations. Pronunciations from
phonetic decoding can help to fill this gap. Previous work has
combined these with G2P-generated pronunciations [9, 10], or
added into G2P training examples [7, 11, 12]. In the work we
describe here, we use candidates from both G2P and phonetic
decoding.

The aspect of the problem that we focus on is candidate
pruning. That is, given a set of pronunciation candidates from
G2P and phonetic decoding (and maybe some from a manually
created lexicon), which subset should we keep? Keeping all the
pronunciations is impractical because it would make decoding
slow, and also because too many pronunciations tend to hurt
ASR performance, even when pronunciation probabilities are
used [13].

Previous work on candidate pruning has relied on esti-
mated pronunciation probabilities to determine which candi-
dates should be cut [11, 6, 8, 7, 12]. The main defect with this
is that for words with multiple pronunciations, it tends to give
us too many minor pronunciation variants (e.g. reflecting co-
articulation effects), which is undesirable for ASR. If we rely
on pronunciation probabilities alone it is hard to discard those
types of variants while keeping variants that come from differ-
ent meanings of the word.

The core idea of this paper is a likelihood-based criterion
for pronunciation-candidate pruning that naturally keeps candi-
dates that are “far apart”.

This paper is organized as follows. We discuss how we gen-
erate pronunciation candidates in Section 2; we explain how we
collect acoustic evidence from training data in Section 3. We
explain our likelihood-based pronunciation selection strategy in
Section 4. Experimental results on various ASR tasks are pro-
vided in Section 5, and we conclude in Section 6.

2. Collecting pronunciation candidates
from multiple sources

In our framework, like [10], we first extend the seed lexicon
to include OOV words in the training data, using a G2P model
trained on the seed lexicon, and then train an acoustic model
(AM) using the G2P-extended lexicon. Then we generate align-
ments for all training data, based on which we then train a bi-
gram phone language model (LM). Using this phone LM and
the AM, we construct a phonetic decoder and use it to generate
phonetic transcription of training data. For each individual word
token in the transcript, we can align it with a phone sequence us-
ing timing information from the alignments and phonetic tran-
scriptions. Then for each specific word w, we can compute the
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Figure 1: The proposed framework of acoustic-data driven lex-
icon learning.

relative frequency of each phone sequence being aligned to it,
by normalizing each phone sequence’s count by the most fre-
quent phone sequence’s count. Then we filter out those phone
sequences whose relative frequency is too low (e.g. smaller than
0.1) and keep the left ones as the alternative pronunciations gen-
erated from phonetic decoding. Then we combine these alter-
native pronunciation candidates with the G2P-extended lexicon
into a large lexicon (called combined lexicon). For each word
w from the combined lexicon, let B denote the set of pronunci-
ation candidates collected from multiple sources, and b denote
one pronunciation (baseform) candidate. The source of b (de-
noted as s(b)) could be one of the three: G2P/phonetic decod-
ing. In the next section we will specify how we collect acoustic
evidence for all pronunciation candidates in B .

3. Acoustic evidence collection
First we introduce some notations. Let O = {O1,O2, ...,OM}
denote acoustic sequences; Mw denote the number of utter-
ances in O which contain the word w 1; Then we further define
✓wb , p(w, b) as the pronunciation probability of a pronun-
ciation b for a word w (

P
b2B ✓wb = 1), and ✓w , {✓wb :

b 2 B} as the pronunciation model for word w. We define
⌧uwb , p(Ou|w, b) as the conditional data likelihood given the
pronunciation of w being b, which is determined by the acoustic
model. This is the ”acoustic evidence” we want to derive from
lattice statistics, which is needed by our pronunciation selection
algorithm.

With the combined lexicon and an existing AM (the one we
used for phonetic decoding in the candidate collection phase),
we generate lattices for each training utterance. This lattice gen-
eration treats distinct pronunciations of words as distinct sym-
bols for the purposes of lattice determinization, unlike our stan-
dard procedure described in [14]. This is achieved by putting
both phone symbols and word symbols as the input sequence on
the FST prior to lattice determinization. From the lattices, we
can obtain per-utterance lattice pronunciation-posterior statis-
tics �uwb , p(w, b|Ou).

When the lattices were generated, we assign uniform priors
over all pronunciation candidates of each word in the combined
lexicon. By Bayes’ rule, we can directly use the posterior statis-
tics �uwb as the likelihoods ⌧uwb

2. Because lattices are pruned,

1we assume that each word appears in each utterance’s transcript at
most once. In practice, if a word appears multiple times in an utter-
ance, we divide the utterance into sub-utterances where each one only
contains one token of the word.

2Strictly speaking, Bayes’ rule only gives us ⌧uwb / �uwb, i.e.

a posterior �uwb could be zero even if w actually appears in a
utterance u. So we always floor �uwb to a small positive scalar
� (In practice it’s set between 10

�7 and 10

�5), so that we have
⌧uwb � �, 8u,w, b.

Based on �uwb, we can obtain another useful statistic, the
average pronunciation posterior �wb , 1

Mw

P
u �uwb, where

the summation
P

u is only taken over those utterances where
the word w actually appears.

After the lattices were dumped, for each word, we prune
away its pronunciations whose average posterior �wb is too low
(e.g. only keeping the top 10), construct a new combined lex-
icon, and then re-generate the lattices and re-collect acoustic
evidence in the same way. We found this pruning is always
helpful as it improves the accuracy of the posteriors.

4. Data-likelihood-reduction based greedy
pronunciation selection

We formulate the pronunciation selection process as a greedy
model selection procedure, with data-likelihood-reduction as
the selection criterion. In this section, we’ll first specify how
to compute the optimal data likelihood given a set of pronun-
ciation candidates using EM and propose a pronunciation se-
lection criterion based on likelihood reduction, and then use an
illustrative example to compare the proposed selection criterion
against other criteria. At last we talk about some practical issues
in our algorithm, and summarize the whole iterative framework
of pronunciation selection.

4.1. A pronunciation selection criterion based on per-
utterance likelihood reduction

Given a set of pronunciation candidates for a specific word w,
and the conditional likelihood ⌧uwb (acoustic evidence) for each
utterance Ou, we want to maximize the total data likelihood
over the pronunciation model ✓w

3:

L(✓w) =

X

u

log

 
X

b

⌧uwb✓wb

!
(1)

where the summation
P

u is only taken over utterances where
the word w actually appears. Since maximizing this objective
doesn’t have a closed form solution, like [8], we use EM which
maximizes the following auxiliary function instead (n stands
for the iteration index, �n

uwb , p(w, b|Ou,✓
n
w) is the pronun-

ciation posterior computed at the nth iteration)

Q(✓n+1
w ,✓n

w) =

X

u

X

b

�n
uwb log ✓

n+1
wb (2)

Maximizing the above function with the constraint
P

b ✓
n+1
wb =

1 gives the M-step:

✓n+1
wb  

P
u �n

uwbP
u

P
b �

n
uwb

(3)

According to Bayes’ rule, we compute the updated posteriors
�n+1
uwb as the following:

�n+1
uwb  

⌧uwb✓
n+1
wbP

b ⌧uwb✓
n+1
wb

(4)

⌧uwb can only be treated as �uwb up to a constant, but the constant
doesn’t affect the objective (1) we want to optimize.

3When we optimize the pronunciation probabilities for a specific
word, we consider the pronunciation probabilities for other words as
fixed.
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which is the E-step. By running (3) and (4) iteratively until con-
vergence, we can find an optimal pronunciation model ✓⇤

w, and
evaluate the optimal log-likelihood (1) L(✓⇤

w) (denoted as L⇤

for simplicity). In order to evaluate the importance of a specific
pronunciation, say, b, we remove b from the pronunciation can-
didate set B, re-initialize the pronunciation model ✓

0
w on top of

B\b , and run EM to optimize (1) with the model ✓
0
w. Writing

the likelihood at convergence after removing b as L⇤
b , we can

compute the per-utterance likelihood reduction associated with
the pronunciation b as:

�Lb ,
�Lb

Mw
=

L⇤ � L⇤
b

Mw
,

This metric reflects the contribution of each pronunciation to
the total data likelihood. With this metric, we can iteratively re-
move least important pronunciations in a greedy fashion, which
is efficient. The complete iterative framework is given in Sec-
tion 4.4.

4.2. An illustrative example

Here we show an example to illustrate the advantage of pro-
nunciation selection based on the per-utterance log likelihood
reduction �Lb over the learned pronunciation probabilities ✓⇤

w,
in terms of dealing with confusability of pronunciation variants.

In Table 1, we listed the pronunciation candidates, aver-
age pronunciation posteriors, learned pronunciation probabili-
ties, and the per-utterance log likelihood reduction of two En-
glish words ‘machine’ and ‘us’ taken from the TED-LIUM [15]
training corpus. Note that the two pronunciations of ‘machine’
only differ in one vowel, while the two pronunciations of ‘us’
represent two distinct meanings.

We want a selection criterion under which it’s possible to
put a threshold to rule out the reduction ‘M IH SH IY N’ (gen-
erated from phonetic-decoding) in the ‘machine’ case, while
keeping the acronym ‘Y UW EH S’ in the ‘us’ case. Looking at
the learned pronunciation probabilities ✓⇤

w, it gives lower val-
ues for ‘Y UW EH S’ than ‘M IH SH IY N’, and thereby cannot
serve as the criterion we need. However, the per-utterance log
likelihood reduction �Lb of ‘AH S’ is much larger than ‘M IH
SH IY N’ (0.034 v.s. 0.004). Thus it’s possible to set a proper
threshold on �Lb to keep ‘AH S’ and remove ‘M IH SH IY N’.

The underlying reason is that the confusability between
pronunciations is reflected in the sharpness of the per-utterance
pronunciation posteriors �uwb. In the ‘us’ case, the two pro-
nunciation variants cannot easily model each other, and there-
fore the posteriors are very sharp for most examples. Thereby
removing the minor pronunciation ‘Y UW EH S’ would result
in a greater reduction in the data likelihood. Thus, beyond re-
flecting the relative frequency, the proposed criterion �Lb is
capable of modeling the confusability between pronunciation
candidates, which is preferable from the Maximum Likelihood
point of view and therefore could help us to select an informa-
tive set of pronunciations.

4.3. Refining the pronunciation selection criterion �Lb

One difficulty of directly using �Lb in an iterative pronuncia-
tion selection framework is that, we need to develop an inter-
pretable threshold T in order to decide when to stop removing
pronunciations. However, we notice the upper bound of �Lb

can be achieved in an extreme case, where we remove an abso-
lutely dominating pronunciation p (meaning: the observed con-
ditional likelihoods satisfy: ⌧uwp = 1, ⌧uwb = �, 8b 6= p
). Before removing p, it’s obvious from (1) that the maximum

Table 1: The pronunciation candidate set B, learned pronun-
ciation probabilities ✓⇤

w, and the per-utterance log likelihood
reduction �Lb for two English words ‘machine’ and ‘us’ from
TED-LIUM.

w ‘machine’ ‘us’
B [‘M AH SH IY N’, ‘M IH SH IY N’] [‘AH S’, ‘Y UW EH S’]
✓⇤
w [0.987, 0.013] [0.992, 0.008]

�Lb [3.575, 0.004] [15.576, 0.034]

L(✓⇤
w) = 0 can be reached with ✓⇤

w being a one-hot vector s.t.
✓wp = 1. After removing p, with the constraint

P
b2B\p ✓

0
wb =

1, the log-likelihood is a constant: L(✓0
w) ⌘ Mw log �. Then

we have: �Lp = (0 �Mw log �)/Mw = � log �. Accord-
ing to this, we scale this upper bound by a scalar ↵ between
[0, 1] to get an interpretable threshold: T = �↵ log � , where
↵ = 1 corresponds to the above extreme case, which means,
for a pronunciation to be not removed, it would have to be
present with probability 1 in 100% instances of the word, and
↵ = 0 means we will never remove any pronunciation candi-
dates. In practice, it’s set between 0.005 and 0.2. We also make
↵ dependent on the source s(b) of the pronunciation, which en-
ables us to use a more conservatively threshold for selecting
pronunciations from a source where the candidates’ quality is
lower in general, like phonetic-decoding (pd), e.g. by setting
↵g2p = 0.02,↵pd = 0.01. So, we define the “score” of a
pronunciation candidate as “how far away” its �Lb is to the
corresponding threshold, i.e.:

qb , �Lb � Ts(b) =
�Lb

Mw + �s(b)
+ ↵s(b) log �

In our framework we iteratively prune the pronunciation
with the lowest score and terminate pruning when all pronunci-
ation have positive scores. Note that the count Mw is smoothed
with a source-dependent scalar �s(b) (5-15 in practice). The
purpose is to keep the score from being to high when Mw is
small, so that in general we select fewer pronunciations if we
only have a few acoustic examples of a word.

4.4. Summary: an iterative framework

The proposed pronunciation selection algorithm, which itera-
tively prunes pronunciations from the initial candidate set B, is
summarized as Algorithm 1 (Bt stands for the selected subset
of pronunciation candidates at iteration t).

5. Experiments
In order to evaluate the performance of the proposed lexicon
learning framework, a small seed lexicon is built by randomly
sampling a small portion (5%) of words from the vocabulary
of the expert lexicon of each task. With the seed lexicon, we
train a G2P model using Sequitur [5] and apply it to all OOV
(w.r.t the seed lexicon) words in the vocabulary of the expert
lexicon, to get the ”G2P-extended” lexicons.4 A baseline sys-
tem called G2P-ext is built using a G2P-extended lexicon with
the optimal number of variants per-word tuned on dev data, and
another baseline system called G2P-1best is built using a G2P-
extended lexicon where we only take the top G2P pronunciation

4In this paper we focus on lexicon learning for alphabetic languages.
Thereby a G2P model trained with a small seed lexicon is able to gen-
erate pronunciations for most words in the expert lexicon.
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Algorithm 1 Greedy pronunciation selection

set t = 0, B0 = B.
While true:

Initialize ✓w uniformly on Bt.
Run EM on Bt to get ✓⇤

w and the optimal log-likelihood
L⇤.

For b in Bt:
Initialize ✓

0
w on Bt\b and run EM to get the opti-

mal log-likelihood L⇤
b .

Compute �Lb = L⇤ � L⇤
b

Compute qb =
�Lb

Mw+�s(b)
+ ↵s(b) log �

If min

b2Bt

qb � 0:

Output Bt as the optimal pronunciation subset.
Break.

Else:
ˆb = argminb2Btqb:

Bt+1 = Bt\ˆb
t = t+ 1

for each word. With this G2P model and acoustic training data
for each task, we can build a learned lexicon using the proposed
framework, and then train an ASR system called “Lex-learn”.
Besides, we have an ASR system trained using the full expert
lexicon as the “Oracle” system. Note that the training recipes
of three ASR systems (G2P-ext, G2P-1best, Oracle, and Lex-
learn) for each task only differ in the lexicons (with the same
vocabulary). All experiments were done with Kaldi [16].

Table 2: ASR Performance on Librispeech (WER on the test-
clean set (tuned on WER of LF-MMI systems on dev-clean,
without 4-gram LM rescoring) with different lexicon conditions
(the average # pronunciations per word for in-vocab words from
acoustic training data, are shown in parentheses). The vocab of
the full expert lexicon (a subset of CMUDict) has 200K words.

WER
Oracle
(1.08)

G2P-ext
(5.05)

G2P-1best
(1)

Lex-learn
(1.42)

SAT 11.32 % 13.11 % 14.57 % 11.53 %
LF-MMI 6.44 % 6.76 % 7.15 % 6.64 %

We conduct experiments on the Librispeech-460 task [17].
For each lexicon condition, we use the 460h training data sub-
set to build speaker-adaptive trained GMM (SAT) models (the
same AM training recipe as the ”SAT 460” from [17]), on top
of which we then train sub-sampled time-delay neural networks
(TDNNs) [18] with the lattice-free MMI (LF-MMI) [19] crite-
rion. The WERs are shown in Table 2. It can be seen that the
learned lexicon performs better than G2P-extended lexicons,
and is close to the oracle lexicon. And the LF-MMI systems are
much more robust to the lexicon quality than SAT systems, i.e.
the G2P-extended and learned lexicons perform closer to the ex-
pert lexicon. The learned lexicon closes 88% (SAT)/ 36%(LF-
MMI) of the WER gap between the G2P-ext system and the
oracle system. Also, looking at the average number of pronun-
ciations per word, the learned lexicon (1.42) is much more com-
pact than the G2P-extended lexicon (5.05), and is very close to
the G2P-1best lexicon (1), though it performs much better than
the G2P-1best lexicon by a large gap: 20.9% (SAT) / 7.1%(LF-
MMI) relatively in WER.

In Table 3, we compare the proposed framework with more

baseline lexicon expansion approaches, on the Librispeech-460
task (WER of SAT systems), with a smaller seed lexicon con-
taining only 1%(2K) randomly sampled words from the same
expert lexicon, in order to make the performance gap between
different systems more noticeable. “G2P-ext”, as described be-
fore, is a baseline built with a G2P-extended lexicon (with a
tuned size). “pp-based selection on G2P candidates” means,
we first align acoustic training data with a large G2P-extended
lexicon containing all G2P generated candidates (up to 10 can-
didates per word), and then use max-normalized pronunciation
probabilities [11] to prune those candidates for each OOV word,
with a tuned threshold (0.4). The pronunciation candidate pool
here is the same as the G2P-ext system (i.e. G2P candidates
only). “pp-based selection on G2P+PD candidates” uses the
same lexicon expansion approach as the former one but we also
add candidates from phonetic decoding (PD) before selection.
Therefore this baseline has the same candidate pool as the pro-
posed framework. The last system “likelihood-reduction-based
selection on G2P+PD candidates” is the proposed framework
(i.e. the “Lex-learn” systems listed before). For fair compar-
ison, under different lexicon conditions, the acoustic models
were re-trained on top of the same acoustic model (the one used
in the shown G2P-ext system). It can be seen that adding PD
candidates to the candidate pool is crucial to the lexicon quality
(0.82% WER improvement), and the proposed pronunciation
selection method solely brings 0.18% WER gain and lowers
the number of pronunciations per word from 5.43 to 1.59.

Table 3: ASR performance (WER of SAT systems on the test-
clean set, without 4-gram LM rescoring) comparison on Lib-
rispeech, with different lexicon expansion approaches.

Lexicon condition (avg. #pronunciations per word) WER
G2P-ext (6.57) 13.72 %

pp-based selection on
G2P candidates (3.77) 13.06 %

pp-based selection on
G2P+PD candidates (5.43) 12.24 %

likelihood-reduction-based selection on
G2P+PD candidates (1.59) 12.06 %

6. Conclusion and future work
In this paper, we propose an acoustic-data driven lexicon learn-
ing framework using a likelihood-reduction based criterion for
selecting pronunciation candidates from multiple sources, i.e.
G2P and phonetic decoding. With the proposed criterion, the
pronunciation candidates are pruned iteratively in a greedy way,
based on the acoustic data likelihood reduction caused by re-
moving each candidate. This approach enables us to construct
a compact yet informative lexicon. Experiments on different
ASR tasks show that, with the proposed framework, starting
with a small expert lexicon (containing 0.88K to10K words),
we are able to learn a lexicon which performs closer to a full
expert lexicon in terms of WER performance on test data, than
lexicons built using G2P alone or with a pruning criterion based
on pronunciation probabilities. As future work, we’d like to
investigate how the amount of training data affects the lexicon
learning performance.
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