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Abstract
In this paper we describe a modification to Stochastic Gra-

dient Descent (SGD) that improves generalization to unseen
data. It consists of doing two steps for each minibatch: a back-
ward step with a small negative learning rate, followed by a
forward step with a larger learning rate. The idea was initially
inspired by ideas from adversarial training, but we show that
it can be viewed as a crude way of canceling out certain sys-
tematic biases that come from training on finite data sets. The
method gives⇠ 10% relative improvement over our best acous-
tic models based on lattice-free MMI, across multiple datasets
with 100-300 hours of data.
Index Terms: deep learning, stochastic gradient descent,
speech recognition.

1. Introduction
Recently, the concept of training on adversarial examples has
been proposed [1, 2, 3, 4]. We had previously attempted to
use adversarial training for speech-recognition tasks, but failed
to obtain any improvement. It occurred to us that a “model-
space” version of adversarial training might work better, and
this became the backstitch method, which is as follows. When
processing a minibatch, instead of taking a single SGD step,
we first take a step with �↵ times the current learning rate,
for a small ↵ (e.g. 0.3), and then a step with 1 + ↵ times the
learning rate, with the same minibatch (and a recomputed gra-
dient). So we are taking a small negative step, then a larger pos-
itive step. This resulted in unexpectedly large improvements –
around 10% relative improvements for our best speech recogni-
tion models based on lattice-free MMI (LF-MMI) [5], and the
improvement was consistent across datasets.

In this paper we will develop the outlines of a theory why
backstitch training might be working, based on the notion that
it counteracts finite-sample bias. We will show results on a
number of LVCSR tasks and find consistent improvements com-
pared with conventional SGD.

In Section 2 we will discuss finite-sample bias and how
it affects optimization tasks where we are training on samples
from an underlying distribution. Section 3 analyzes backstitch
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training from this perspective and discusses the conditions un-
der which it can be considered to be counteracting finite-sample
bias. Section 4 discusses the interaction of backstitch training
with various other aspects of our training framework. Section 5
shows our experimental results on multiple datasets, and we
conclude in Section 6.

2. Finite-sample bias
By finite-sample bias what we specifically mean is that any time
we train using gradients from samples that we have seen before,
for most model types this will cause the gradient estimate to be
systematically biased. We first illustrate this via an example and
will then show what we mean more generally.

2.1. Example

Probably the simplest example of finite-sample bias is the case
where we are estimating the mean and variance of a Gaussian
distribution to maximize the likelihood of some data. Maximiz-
ing the likelihood of the data from finite samples leads to vari-
ances which are systematically smaller than the real variance.
This could be formulated as maximizing a function

f(x;✓) = N(x;µ,�2) (1)

where ✓ = (µ,�2). Although there are easier ways to esti-
mate a mean and variance, it’s quite possible to do so via SGD;
and using a likelihood-based objective function, this will con-
verge to the biased maximum likelihood estimate.

2.2. Finite-sample bias (more general case)

We assume we are minimizing E

x⇠P

[f(x;✓)], and that there
is a global maximum ✓⇤. We also assume that the Hessian H
equals I, which will simplify some of the following expressions.
This can be achieved via a change of variables, as long as the
original Hessian is full rank. Suppose that we have access only
to a finite number of samples from P : x
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and let the averages of these be:
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The argmin of the objective function given the sampled data can
be approximated as:
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and this is an exact expression if f(x;✓) is quadratic in ✓. Since
we previously specified that the “true” expected Hessian H is
identity, we can write
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which comes from a first-order Taylor expansion around
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We are interested in the expected bias in the estimate of ✓,
i.e. in E[✓est � ✓⇤], where the expectations are taken over the
set of I training samples generated from their underlying distri-
bution. In (10), the term �2g

avg

does not lead to any expected
bias, because the expected value of g is zero. Nor do the terms
in summation on the right for i 6= j, because (due to indepen-
dence) the expectation can be decomposed into the product of
two terms, one of which (involving g) is zero. The only poten-
tial bias comes from the “self-terms” (for i = j), i.e. from the
quantity 1

I

2
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, so we can write:
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Since we previously ensured that the expected Hessian is
identity (H = I), adding an extra term c to the derivative of
f(x;✓) during training would approximately become an offset
�c in the estimated parameter, so in order to cancel out the bias
of Equation (11) it’s reasonable to add a correction term:

c =
1
I

E

x

[H(x)g(x)] (12)

to the gradients we use to train the network. The quantities
H(x) and g(x) are of course defined w.r.t. the optimal param-
eter ✓⇤ which is unknown, and in practice any expressions will
use the current ✓.

2.3. Finite-sample bias (non-identity Hessian)

Above, we assumed that via a change of variables, the Hessian
was identity. In this section we find the equivalent expressions
for when the Hessian is positive-definite but non-identity. Sup-
pose we have a non-identity H

orig

w.r.t. an original parameter
 , then we can define
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We’ll use the notation g✓ and H✓ for a derivative or Hes-
sian w.r.t. ✓, and g and H for a derivative or Hessian w.r.t.
 . The conversion is:
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By adding ✓ subscripts to Equation (11), and expanding out the
expressions for H✓ and g✓ above, we would get:
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and because we want the expectation in terms of the difference
in  , we multiply Equation (11) by H�0.5

orig

on the left, and then
replace H�0.5

orig

(✓est � ✓⇤) with  est �  ⇤, giving us a bias:
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Suppose we add an offset/correction term c
 

to the deriva-
tive of f(x; ) during training, this would lead to an approx-
imate offset �H�1

orig

c
 

to the parameter  , so the correction
term that we need to add to the derivatives of f w.r.t  in order
to cancel out the bias of Equation (17), is:
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Comparing with the expression (12) for when the average
Hessian is unit, the difference is the factor H�1

orig

, which is the
inverse of the average Hessian.

3. Backstitch training and relation to
finite-sample bias

We will now introduce some notation for backstitch training and
show how, under certain conditions, it acts to counter the finite-
sample bias of Equation (17).

Suppose a single iteration of conventional SGD is written
✓
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where x
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is whichever sample we choose for the n’th SGD
iteration and g(x,✓
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) is the derivative of f(x
,

✓) w.r.t. ✓, eval-
uated at ✓ = ✓

n

. Although in practice we use minibatches, we
will not develop special notation for that, since it doesn’t affect
the math– in principle we could define the task as being over
minibatches. In backstitch training, we do two steps:
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where the constant ↵ > 0 determines how strongly we are
applying the backstitch training. View this as a small backwards
step followed by a larger forwards step. For purposes of analy-
sis we can telescope these two iterations into one by making a
quadratic approximation around ✓ = ✓

n

:
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If we were to view this is a correction term to g, it would look
like:
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Comparing this with Equation (12), this would make sense
as an exact bias-correction method if ⌫(↵+ ↵

2) = 1/I , where
I is the number of samples, and if we were in a space were
the expected Hessian were identity. Of course these are quite
strong assumptions, and we haven’t developed a theory of how
this method is expected to perform when the assumptions aren’t
quite met.



4. Other aspects of backstitch training
4.1. Efficiency and backstitch interval

Naively implemented, backstitch training would take twice as
long per epoch as regular training because we need to train twice
on each minibatch. This is inconvenient. To speed it up, we
have experimented with versions where we do the backstitch
training every n minibatches, and do normal SGD updates in
between. We call this n value the “backstitch interval”; n = 1
means doing it every update, n = 4 means doing it every 4th
update. We have found that the performance improvement we
obtained with ↵ = 0.3 and n = 1 could be more efficiently
obtained with ↵ = 1.0 and n = 4.

4.2. Interaction with natural gradient

The assumption that the expected Hessian is identity is actually
not too unreasonable because we are using a Natural Gradient
(NG) method for training [6, 7, 8]. Natural Gradient can be
equivalently viewed as a change of variables into a space where
a certain factored estimate of the Fisher matrix is identity; and
if the objective function can be interpreted as a log probabil-
ity or likelihood of some kind, under certain regularity condi-
tions the Fisher and Hessian should have the same value [9].
So from a theoretical perspective there is reason to expect that
backstitch training should work particularly well with NG. Our
preliminary experiments show backstitch training is also effec-
tive without NG, but its improvement is less than with NG, as
expected.

We should mention regarding the interaction with NG more
generally: we have used terminology such as “a parameter
space where the Hessian is identity”, as if we were actually per-
forming a change of variables, and we have mentioned how NG
takes us closer to such a situation. NG training can indeed be
formulated as a change of variables, but actually we formulate
it as a modification to the derivatives that is more like a ma-
trix multiplication (by the inverse of a factored Fisher matrix).
This equivalence with a change of variables holds for backstitch
training too, so the interaction is straightforward; we just men-
tion it as it could be a source of confusion.

4.3. Interaction with natural gradient updates

We are using the “online NG” method described in [8]. This in-
volves updating an estimate of the Fisher matrix on each mini-
batch. It is important for the convergence of the overall SGD,
that the estimate of the Fisher matrix should be obtained from
previous minibatches. Otherwise it could cause a bias due to
effects similar to the finite-sample bias we are discussing in this
paper. For backstitch training we modified our NG implemen-
tation to ensure that the Fisher-matrix estimates used in the NG
code are not contaminated with the current minibatch. With
reference to the two-step training procedure of Equations (20)
and (21), we freeze the Fisher-matrix estimates during the first
step and allow them to be updated only during the second.
We experimented with doing it the “wrong way” (updating the
Fisher matrix on the first step, allowing the second step to use
contaminated Fisher-matrix estimates), and as expected this de-
graded the results.

4.4. Backstitch training and parameter maximum changes

One aspect of our training procedure is that to prevent instabil-
ity, we enforce a maximum parameter-change. This is done at
two levels: per component (which very roughly means: for each

layer of the neural network), and globally. There is no max-
imum change per individual parameter. Our normal defaults
are a max-change of 0.75 (in Euclidean distance in parameter
space) per component per minibatch, and a max-change of 2.0
globally per minibatch, enforced first per component and then
globally.

When implementing backstitch training we tried to ensure
that the same “effective” learning-rate matrix (after imposing
the max-change) was used in both the first and second steps.
The way we did this was by scaling the max-change constraints
before applying them, by ↵ in the first pass and 1 + ↵ in the
second pass.

4.5. Backstitch training and momentum

The interaction of backstitch training with momentum is non-
trivial and we have not implemented the combination. Most of
our systems do not use momentum anyway, as NG is effective
in preventing instability and we usually find that momentum
hurts performance. None of our LF-MMI systems [5] use mo-
mentum; the only systems where we use momentum as a matter
of course are our cross-entropy (CE) trained LSTM-based sys-
tems where we use the moderate momentum value of 0.5. We
are currently working on a momentum-friendly version, so that
it can be used in toolkits that rely on momentum for good per-
formance.

4.6. Slow start backstitch training

We noticed that when backstitch is introduced partway through
training, there is a sharp degradation in both training-set and
validation-set objective function, which is then quite rapidly
reversed. If we start training with backstitch enabled, this
degradation is visible at the start of training. (These objective
function values are measured separately from the normal train-
ing process, and are independent from the expected objective-
function degradation when we process each minibatch the sec-
ond time). We don’t yet fully understand why this happens, but
in order to prevent any possible bad effects, we always intro-
duce backstitch gradually over about 10 iterations 1.

5. Experiments
We conducted experiments with the Kaldi speech recogni-
tion toolkit [10], with techniques including speed perturba-
tion [11], i-vector adaptation [12] and pronunciation and si-
lence probability modeling [13]. We did extensive experiments
on three different LVCSR tasks using backstitch SGD training
with different setups, including different criteria (CE and LF-
MMI [5]), different network architectures (Time-Delay Neural
Network [14, 15] (TDNN) with ReLU nonliearities [16, 17],
Bidirectional LSTM [18, 19] (BLSTM) consisting of stacked
LSTMP layers [20], and a mixture of TDNN and unidirectional
LSTM (TDNN-LSTM2) which we recently found not only out-
performs BLSTM, but is also computationally more efficient

1An iteration is how long it takes for each job to process a fixed
amount of data in our framework, tuned to take about 2 to 5 minutes’
worth of GPU time. For a typical acoustic model this is ⇠ 1600 param-
eter updates.

2The network architecture is basically several unidirectional LSTM
layers interleaved with TDNN layers, and having one or more densely
spliced TDNN layers preceding the first LSTM layer is crucial to
achieve good performance. An example recipe can be found at https:
//github.com/kaldi-asr/kaldi/blob/master/egs/

swbd/s5c/local/chain/tuning/run_tdnn_lstm_1e.sh.

https://github.com/kaldi-asr/kaldi/blob/master/egs/swbd/s5c/local/chain/tuning/run_tdnn_lstm_1e.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/swbd/s5c/local/chain/tuning/run_tdnn_lstm_1e.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/swbd/s5c/local/chain/tuning/run_tdnn_lstm_1e.sh


than BLSTM). The backstitch scale ↵, backstitch interval n

(see Sec. 4.1) and number of epochs were tuned for each in-
dividual backstitch training experiment, therefore these hyper-
parameters vary across different setups. The baseline systems’
number of epochs had been tuned previously. A common con-
figuration is, ↵ = 1.0, n = 4, meaning we use ↵ = 1.0 once
every 4 minibatches. Some older experiments, before we in-
troduced the faster version, use ↵ = 0.3, n = 1. The num-
ber of epochs with backstitch training is 1.5 ⇠ 2 times the
number of epochs with normal training, because we found that
WER continues to improve for more epochs with this method.
All the other hyper-parameters are kept unchanged from those
in the normal training experiment3. The results of LF-MMI
and CE systems are shown in Table 1 and Table 2 respectively
(↵ = 0.0 means the baseline SGD training). While improve-
ments are consistently observed across all the setups, they are
most prominent with LF-MMI+TDNN-LSTM (which happen
to be our best systems) at around 10% relative WER improve-
ment.

Table 1: Comparison of Backstitch SGD training with normal
SGD training in LF-MMI systems.

LF-MMI
Dataset ↵[/n] WER (%)

TDNN-LSTM BLSTM
dev eval dev eval

AMI-SDM 0.0 37.9 41.1 39.7 42.9
1.0/4 34.1 37.64 36.7 40.4

(use IHM alignment) Rel. Gain (%) 10.0 8.5 7.6 5.8
fsh fg tg fsh fg tg

Switchboard 0.0 14.1 15.5 14.3 15.8
0.3/1 0.2/1 12.5 13.9 13.3 14.7
Rel. Gain (%) 12.8 10.3 7.0 5.8

dev test dev test

TED-LIUM 0.0 9.4 8.8 9.4 9.0
1.0/4 8.3 7.8 8.7 8.1

[21] Rel. Gain (%) 11.7 11.4 7.4 10.0

Table 2: Comparison of Backstitch SGD training with normal
SGD training in CE systems.

CE
Dataset ↵[/n] WER (%)

TDNN-LSTM BLSTM
dev eval dev eval

AMI-SDM 0.0 37.0 41.0 38.0 41.3
0.3/1 36.0 39.8 36.9 40.3

(use IHM alignment) Rel. Gain (%) 2.7 2.9 2.9 2.4
dev test dev test

TED-LIUM 0.0 10.9 10.0 10.7 9.5
1.0/4 N/A N/A 9.9 9.1

[21] Rel. Gain (%) N/A N/A 7.5 4.2

Figure 1 compares the training log-probabilities be-
tween regular SGD and the backstitch method, on our LF-
MMI+TDNN-LSTM system on the AMI-SDM dataset. The
main observation, which we consistently see, is that the differ-
ence between train and validation objective functions is smaller
when using backstitch.

3Except that momentum is disabled when doing backstitch training
in CE systems. See Section 4.5 for more explanations.

4To the best of our knowledge, this is the best number ever reported
on AMI-SDM.

Figure 1: Plot of log-probability vs iterations on AMI-SDM us-
ing LF-MMI+TDNN-LSTM (We continued backstitch training
for twice the epochs of normal training).

Figure 2: Plot of log-probability vs iterations on AMI-SDM
RNNLMs.

We also tested the backstitch method in language model-
ing tasks with training recurrent neural network language mod-
els [22] (RNNLMs) on the AMI-SDM text data. We used nnet3
implementation of neural networks of Kaldi to train RNNLMs
with CE objective functions and the backstitch scale is tuned to
be 0.8. Figure 2 shows the comparisons between regular SGD
and the backstitch method, where we see similar trends. We are
encouraged that the backstitch method’s usefulness might not
be limited to acoustic modeling tasks. However, we have less
confidence in our RNNLM results than with our ASR results,
since the setup is much newer and may not be as well tuned.

6. Conclusion and Future work
In this paper we proposed a modified Stochastic Gradient De-
scent method consisting of two steps of update for each mini-
batch. We showed that the proposed method can be consid-
ered as a way to approximately eliminate the systemic bias that
comes from training on finite data. We observed around 10%
relative improvement in WER on multiple LVCSR datasets, ver-
sus best systems. The improvement on language modeling also
suggests its potential effectiveness in other tasks.

As future work, we would like to evaluate the proposed
method in other tasks such as object recognition/classification
and machine translation, etc. We are also working on the com-
bination of backstitch with momentum.



7. References
[1] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and har-

nessing adversarial examples,” ICLR, 2015.
[2] R. Huang, B. Xu, D. Schuurmans, and C. Szepesvári, “Learning
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