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ABSTRACT

This paper describes the JHU team’s Kaldi system submis-
sion to the Arabic MGB-3: The Arabic speech recognition in
the Wild Challenge for ASRU-2017. We use a weights trans-
fer approach to adapt a neural network trained on the out-of-
domain MGB-2 multi-dialect Arabic TV broadcast corpus to
the MGB-3 Egyptian YouTube video corpus. The neural net-
work has a TDNN-LSTM architecture and is trained using
lattice-free maximum mutual information (LF-MMI) objec-
tive followed by sMBR discriminative training. For supervi-
sion, we fuse transcripts from 4 independent transcribers into
confusion network training graphs. We also describe our own
approach for speaker diarization and audio-transcript align-
ment. We use this to prepare lightly supervised transcriptions
for training the seed system used for adaptation to MGB-
3. Our primary submission to the challenge gives a multi-
reference WER of 32.78% on the MGB-3 test set.

Index Terms— Multi-genre broadcast, Automatic speech
recognition, Lightly-supervised training, LF-MMI, Segmen-
tation

1. INTRODUCTION

The Arabic Multi-Genre Broadcast MGB-3 challenge [1] is
an extension to the MGB-2 challenge [2]. While the MGB-2
challenge was on a multi-dialect Arabic corpus with record-
ings from Aljazeera Arabic TV channel spanning over 10
years, the MGB-3 challenge focuses on dialectal Arabic from
Egyptian multi-genre YouTube videos. The MGB-3 chal-
lenge has a total of 80 YouTube programs from seven dif-
ferent genre. The first 12 minutes of each was segmented and
transcribed manually. This 16 hours of data was split into 5
hour adaptation set, 5 hour development set and 6 hour evalu-
ation set. Unlike the MGB-2 challenge that had 1200 hours of
audio data, albeit with only lightly-supervised transcriptions,
the MGB-3 challenge has only 5 hours of in-domain audio
data (the adaptation set) for training. The tiny amount of in-
domain data along with mismatch in audio conditions (TV

broadcast vs YouTube) makes this a transfer learning chal-
lenge.

An additional challenge is that the MGB-3 data was tran-
scribed independently by 4 different annotators. This is to
get around the fact that the dialect does not have clearly de-
fined orthography i.e. different people write the same word in
slightly different forms. The evaluation was also performed
using a multi-reference word error rate (MR-WER) [3] metric
instead of the standard WER.

The JHU team did not participate in the MGB-2 chal-
lenge. So our first work in the MGB-3 challenge was to de-
velop a seed system trained on the MGB-2 data. We used
the baseline lightly-supervised transcripts [2] provided by the
challenge organizers to train seed systems. The seed systems
were used in our own Kaldi [4] implementation of diarization
and segmentation to retrieve best-matching transcripts for au-
dio segments. We recovered a total of 982 hours of Arabic TV
data. We used it to train a TDNN-LSTM neural network [5]
with LF-MMI [6] objective followed by sMBR [7] training.

The second part of the challenge was to adapt the sys-
tem to the 5 hours MGB-3 adaptation data, for which we
used transfer learning using LF-MMI objective [8]. We tried
both using the 4 independent transcriptions separately as well
as fusing them into a confusion network to create training
graphs. Confusion network has been proven to be effective
in dealing with uncertainties in various ASR applications [9].
The primary system submission was a lattice-level minimum
Bayes risk (MBR) system combination [10] of the sMBR and
non-sMBR system. This system had an MR-WER of 33.41%
on the MGB-3 dev set and 32.78% on the test set.

This paper is organized as follows. Section 2 describes
our approach of segmenting the 1200 hours MGB-2 training
data and retrieving the matching transcriptions for the same.
Section 3 describes the seed system trained on the segmented
data. Section 4.1 describes the adaptation to MGB-3 data. In
sections 5 and 6, we present the results and conclusions, and
discuss some post-evaluation findings.



2. SEGMENTATION AND TRANSCRIPT
RETRIEVAL

While we used the lightly-supervised transcripts [2] pro-
vided by the challenge organizers for a seed system, we used
our own implementation in Kaldi of diarization and audio-
transcript alignment1 to obtain transcripts for audio segments
of the MGB-2 corpus. This involves two stages: first one is
a diarization involving only the audio, and the second one
is a segmentation of the recording along with retrieval of
transcripts for those segments. The diarization is required to
create segments that have a single speaker, so that we can
use online i-vector based speaker adaptation for neural net-
works [11, 12]. The diarization is based on i-vectors [13]
and probabilistic linear discriminant analysis (PLDA) [14]
using a pipeline similar to [15], but adapted to broadcast sce-
nario by incorporating some approaches from conventional
diarization systems like [16]. This is described in section 2.1.
The transcript alignment approach we used has similarities to
[17, 18, 2] and uses decoding with a biased language model
(LM) trained on the raw transcript. The raw recordings are
segmented and transcripts are obtained as the best-matching
sub-sequence of words in the raw transcription, followed by
some cleanup. This procedure is described in section 2.2

2.1. Speaker diarization

The objective in this section is to create initial segments that
contain only speech from a single speaker, so that we can
use i-vector based speaker adaptation of neural networks [11].
Since, we use online i-vector extraction, the actual identity of
the speaker is not very important. However, we do want clus-
ters (speakers) containing sufficient number of frames to re-
liably estimate i-vectors, and hence must avoid over-creating
clusters.

We use a speaker diarization approach based on i-vectors
[13] and PLDA [14] similar to the work in [15]. Prior to doing
diarization, we use a neural network based speech activity de-
tection to remove silence regions and work only on segments
of speech.

2.1.1. Training

We use an i-vector extractor trained on 1200 hours of MGB-
2 data with segments and speaker metadata provided by
the challenge organizers2. The universal background model
(UBM) comprises of 2048 gaussians trained on 20 dimen-
sional MFCCs with delta and delta-delta features. The total
variability matrix has a dimension of 400. We scaled down
the i-vector estimation statistics by 0.3 to account for the
correlation between adjacent frames, and only accumulated

1https://github.com/kaldi-asr/kaldi/blob/master/
egs/wsj/s5/steps/cleanup/segment_long_utterances.
sh

2It was filtered with a threshold of 80% word matching error rate.

statistics on the high energy frames, using an energy-based
VAD.

To train the PLDA model, we use random chunks of utter-
ances with durations between 3 and 20 seconds from each ut-
terance and keep at least three chunks per speaker. We assume
the mean-normalized, whitened and length-normalized [19] i-
vectors follow a gaussian PLDA model with full-covariance
residue i.e. no explicit eigenchannel space. We transform the
i-vector offset around mean m using a matrix Å as in [14]
to a new space where the within-class covariance is unit and
between-class covariance is a diagonal matrix Λ. Thus, the
i-vector w has a generative model:

w = m + Au, (1)
u ∼ N (·|v, I), (2)
v ∼ N (·|0,Λ). (3)

The parameters of the PLDA model {m,A,Λ} are
trained using expectation-maximization algorithm for 10 iter-
ations. At the end of this stage, we have an i-vector extractor
consisting of the UBM and the total variability matrix, and a
trained PLDA model consisting of the i-vector transformation
matrix and diagonal between-class covariance.

2.1.2. Clustering

The clustering process is similar to the one in [15] and con-
sists of the three stages – temporal segmentation, i-vector ex-
traction and agglomerative hierarchical clustering (AHC). But
we had to make minor modifications inspired by conventional
diarization systems [16] for the system to work efficiently in
the broadcast recording scenario. This approach was tuned to
work well on the English broadcast news evaluation sets [20]
from ’96 to ’99.

The raw recordings of the MGB-2 corpus are about 20-60
minutes long. This made it inefficient to uniformly segment
the recording into 1.5s overlapping chunks as in [15]. Instead,
we first do a change point detection [21] using full-covariance
gaussians estimated on adjacent 1.5s long windows. We mea-
sure the generalized likelihood ratio (GLR) between gaus-
sians estimated on the individual windows and a gaussian es-
timated on the combined 3 second window. We designate
a change point at isolated local maxima of these GLR dis-
tance values. We follow this up with a linear clustering step
that merges adjacent segments based on full-covariance gaus-
sian Bayesian information criterion (∆BIC) [16]. We extract
i-vectors for each cluster at this stage. These are mean cen-
tered, whitened, length-normalized [19] and transformed us-
ing a recording-dependent PCA [15]. We retain the top di-
mensions in the PCA space so as to keep 0.9 of the total en-
ergy; this is usually around 200-250.

The initial clusters are merged using AHC using a dis-
tance metric of PLDA log-likelihood ratio (LLR) before and



after merging:
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are transformed i-
vectors corresponding to the n2 segments in cluster S2, Λ
is the diagonal between-class covariance matrix. The likeli-
hoods in (4) computed using the equation 6 in [14]. An alter-
native distance metric for the one in (4) is the average pairwise
PLDA LLR, which was used in [15]. However, in our experi-
ments in English broadcast news, we found the actual PLDA
log-likelihood ratio was more robust. We, however, believe
that using average pairwise PLDA LLR objective would have
worked equally well.

The merging of clusters using the AHC procedure is
stopped when the best distance is larger than a particular
threshold that is usually obtained by a score calibration pro-
cedure. We could not use the approach in [15] for automatic
calibration because the number of segments corresponding
to the different speakers far out-numbers the segments cor-
responding to the same speaker, and we could not fit two
separate gaussians on the PLDA LLR scores of the initial
clusters (at the beginning of AHC). We use the following
automatic calibration approach for determining the stopping
threshold, which was also tested on the English broadcast
news. We fit a gaussian to the pairwise PLDA LLR scores
of the initial clusters. We take as the threshold the value at
two standard deviations away from the mean of gaussian.
We point out that the diarization is only for getting good
initial segments that have the same or similar speakers and
sufficient number of frames for i-vector estimation – the ac-
tual identity of the speakers is not very crucial since we use
online i-vectors for speaker adaptation [12]. So we did not
do experiments to tune the distance metrics and calibration
thresholds.

2.2. Transcript retrieval

In this stage, we retrieve transcripts for segments of raw audio
obtained from section 2.1. We follow the baseline recipe [22]
to prepare a 250 hour subset of MGB-2 corpus with lightly-
supervised transcripts. This is used to train a TDNN-LSTM
network with 3 LSTMP [23] layers with LF-MMI objective.
The system also uses i-vectors for speaker adaptation [11] us-
ing speaker information obtained from section 2.1. The reader
is directed to [5] for details about the structure of the network
and [6] for training details.

For each recording of the MGB-2 training set, the diarized
segments obtained from section 2.1 are uniformly segmented
if they are longer than 30 seconds. These segments are de-
coded using the seed acoustic model and a 4-gram unmodi-
fied Kneser-Ney interpolated LM [24, 25] trained on the raw

transcript of that recording. The best path transcript is ob-
tained for each segment. This transcript is aligned with the
raw transcript of the recording using Smith-Waterman align-
ment [26] to select the best matching sub-sequence of words.
For efficiency, we assume a linear cost for insertions and dele-
tions; hence the algorithm is same as Levenshtein alignment,
but forgives errors at the edges. Since the raw transcript of the
recording can be really long with many (say 10000 words), we
do not try to align each segment with the whole raw transcript,
but align it with only some parts (we refer to these as “docu-
ments”) of the raw transcript. This process is described in the
section 2.2.1. The alignment information containing the best
matching sub-sequence of words is converted into transcript.
This process is described in section 2.2.2.

2.2.1. Document retrieval

We split the raw transcript into documents of around 1000
words. For each segment, we retrieve the documents that best
match the hypothesized best path transcript of the segment.
The document retrieval is done using term-frequency inverse-
document-frequency (TF-IDF) similarity score [27] using n-
gram terms with n ∈ {1, 2}. The IDF statistics are computed
over all the documents from all the raw training transcripts.
For the source document’s TF-IDF value, we use

tfidf(t, d) = f(t, d) log
N

nt
(5)

and for the query segment’s TF-IDF value, we use

tfidf(t, q) =

(
0.5 + 0.5

f(t, q)

maxt f(t, q)

)
log

N

nt
, (6)

where f(t, d) is the raw count of the term-document pair
(t, d), nt is the number of source documents containing the
term t and N is the total number of source documents.

Along with the retrieved best document, we also include
about 200 words from the adjacent document on either side so
that we don’t lose any transcription that is at the edge of the
best document. The sequence of words in the retrieved docu-
ments form the reference for the Smith-Waterman alignment.

2.2.2. Obtaining transcripts

We perform Smith-Waterman alignment between the refer-
ence sequence of words retrieved from the process in sec-
tion 2.2.1 and the ASR hypothesized transcript. The reference
part of Smith-Waterman alignment is retained as the “correct”
transcript. Since the reference was aligned with the ASR hy-
pothesis, we also have the timing for each reference word.
We can use this to create segments by retaining mostly the
correctly recognized words. We throw away segments for
which the WMER between the reference and hypothesis is
more than 50% or more than half the segment contains non-
scored words (like Laugh, Cough etc.) or silence.



3. MGB-2 SEED SYSTEM

This section describes the seed system for MGB-3 challenge
that is trained on the out-of-domain Arabic TV recordings
from the MGB-2 corpus. After the first stage of segmenta-
tion and transcript retrieval described in section 2, we recov-
ered 982 hours of audio with matched transcripts. This data
is used to train a TDNN-LSTM network with LF-MMI objec-
tive [6] using the suggested Gale Arabic Kaldi recipe3. We
use 100 dimensional i-vector for speaker adaptation of net-
work [11, 12]. We additional add dropout on the LSTMP lay-
ers with a dropout proportion that peaks to 0.2 at 50% training
and is 0 at the beginning and end of the training [5]. This is
followed by sMBR training for 1 epoch.

For decoding, we used a 3-gram modified Kneser-Ney in-
terpolated LM trained on the lightly-supervised MGB-2 tran-
scripts to generate lattices. These were rescored with a 4-
gram modified Kneser-Ney interpolated LM trained on all the
MGB-2 transcripts and the 110 million word LM corpus col-
lected from Aljazeera.net website as provided by the chal-
lenge organizers [2]. We did not do RNN-LM rescoring at
this time and leave it for the future work.

The results are in table 1. The first row shows results with
the lightly-supervised transcripts provided by the challenge
organizers. The second row shows results with the transcripts
retrieved by our approach of diarization and audio-transcript
alignment described in section 2. This gives a comparable,
but slightly better WER performance (17.6% vs 17.8% on
MGB-2 dev); this demonstrates the utility of our diarization
and audio-transcript alignment tools for this scenario. We fur-
ther improved the acoustic model using dropout on LSTMP
layers [5], which improves WER by 0.4%. Discriminative
training using sMBR gives additional 1% improvement. This
is our primary submission for the MGB-2 progress evaluation
that gave 16% WER on the eval set.

The last column in table 1 shows the MR-WER results
on decoding the MGB-3 data directly using the system i.e.
without any adaptation to the MGB-3 data. We see that the
MR-WER is poor in all cases for the unadapted network. We
choose our primary submission (the last row) for adaptation.
Our approaches for adaptation are described in the following
sections.

Table 1. MGB-2 results
System MGB-2 MGB-3

dev eval dev
Baseline transcripts 17.8 - 49.20
Our transcripts 17.6 - 48.47
+ Dropout 17.2 - 47.42
+ sMBR 16.2 16.0 47.32

3https://github.com/kaldi-asr/kaldi/blob/
f1d7891c5ea55884baceb4645754aff74fc3e0d3/egs/gale_
arabic/s5b/local/chain/tuning/run_tdnn_lstm_1a.sh

4. ADAPTATION TO MGB-3 DATA

This section describes adaptation of the MGB-2 seed neural
network to the Egyptian Arabic adaptation data of the MGB-
3 corpus. We did not do any LM adaptation as we got no
improvement on the dev data by interpolating n-gram counts.
We leave this for future work.

4.1. Transfer learning

The MGB-2 seed system from section 3 is used to create the
numerator supervision lattices to adapt the neural network.
Since each segment in the adaptation data is transcribed by
4 independent transcribers, we create 4x copies of the utter-
ances, one for each. We also perturb the speed to create 3x
copies at speeds 0.9, 1.0 and 1.1, and perturb the volume ran-
domly by a factor between 0.8 and 1.2. For LF-MMI training,
we need to train a phone LM to create the denominator finite
state transducer (FST) [6]. Since the amount of transcrip-
tion in MGB-3 adaptation set is very small, we estimate the
phone LM by combining the counts from the MGB-2 tran-
scripts and the MGB-3 transcripts from all four transcribers.
We use the same context-dependency tree of the seed system
for the MGB-3 system.

We use a weight transfer approach suggested in [8]. We
also tried the multi-task learning approach suggested in the
same work, but initial experiments did not show better results
than weight transfer. Since the suggested multi-task approach
required training simultaneously on all of the MGB-2 data
and the MGB-3 data, it was very difficult to do it within the
time frame of the challenge and so we did not go forward with
it. The affine component before the output is retrained, while
the rest of the network is updated with a smaller (by a 0.1 fac-
tor) learning rate. The network is trained with LF-MMI objec-
tive for 0.5 epochs4, followed by sMBR training for 1 epoch
with the same learning rate for all layers. To generate the
denominator lattice for sMBR, the decoding graph is created
using a unigram word LM estimated with 0.01 weight on the
counts from the MGB-2 acoustic transcripts and 1.0 weight
on the counts from each transcriber of the MGB-3 adaptation
data.

Since the amount of data in the adaptation set is very
small, the network gets over-trained if a high learning rate
is used or trained for many epochs. We found after the chal-
lenge period that it is better to just update the whole neural
network using the MGB-3 data without reinitializing the final
affine component as suggested in [8]. This suggests that even
out-of-domain data is very critical for the training deep neural
networks.

4Effectively like 6 epochs because we create 3x speed perturbation and
4x transcribers



5. RESULTS AND DISCUSSION

Table 2 shows results of transfer learning to MGB-3 adapta-
tion data for the contrastive system submissions and the pri-
mary submission. For comparison, the unadapted neural net-
work results are shown in the first two rows. These are the
same as the last two rows in table 1. The first adapted system
is just the LF-MMI trained system. This gives an MR-WER
of 35.97%, which is a 11.35% absolute improvement over the
seed system (47.32%). Adding sMBR training gives a 0.82%
absolute improvement over this. The primary system submis-
sion, which is an MBR lattice combination of the two systems
gives a 1.74% absolute gain in MR-WER.

Table 2. MR-WER (%) results on the submitted MGB-3 sys-
tems

System dev test

Unadapted without sMBR 47.42 -
with sMBR 47.32 -

Adapted
LF-MMI 35.97 -
LF-MMI + sMBR 35.15 -
Primary 33.41 32.78

5.1. Post-evaluation period results

5.1.1. Transcript combination

The MGB-3 adaptation data has transcripts from 4 indepen-
dent transcribers. We combined the transcripts into a con-
fusion network using algorithm 1 and used these to creating
supervision lattices for LF-MMI training. For estimating the
phone LM for LF-MMI training, we combine the counts from
the best path phone sequence in these lattices with the counts
from the MGB-2 phone sequences. The results are in the col-
umn “re-init” of table 3. The first row shows results with us-
ing separate transcripts from the 4 transcribers independently.
This is same as the LF-MMI result in table 2. Using confu-
sion network (row 2) improves the result by 0.7% absolute to
35.27%.

5.1.2. Transferring all layers

After the challenge period, we found that it was better to not
re-initialize the final layer of the neural network during trans-
fer learning as done in section 4.1. So we just transfer all the
layers trained on the MGB-2 dataset and train on MGB-3 data
for 2 epochs. The learning rate for the final layer was set to 10
times that of the other layers. This gave a big improvement of
almost 1.5-2% absolute as shown in the column “no re-init”
of table 3.

Algorithm 1 Procedure to create confusion network fusing
transcripts T from multiple transcribers
Input: Set of transcripts T

1: procedure CREATECONFUSIONNETWORK(T )
2: N ← |T |
3: Choose one of the N transcripts arbitrarily as the pri-

mary transcript p.
4: for t ∈ T \ {p} do
5: Do Levenshtein alignment of p and t to get a list

of pairs [(p1, t1), (p2, t2) . . . ]. We will refer to t as the
secondary transcript. Insertions and deletions are repre-
sented with pi and ti respectively being ε.

6: end for
7: Thus, we have A = Set of N − 2 alignments.
8: Pick the longest alignment as the “base” alignment
A0 and add it to the confusion network so that each seg-
ment i of the confusion network has two arcs that corre-
spond to pi and ti.

9: for A ∈ A \ {A0} do
10: Align the entries of A with those of A0 based on

the word of the primary transcript. When there are εs as
the primary word onA0, we allow a sequence ta, ta+1 . . .
from A to get aligned with the primary word entry in A.

11: end for
12: end procedure
Output: Confusion network graph with N arcs on each seg-

ment. But one or more of the arcs could be ε.

Table 3. MR-WER (%) results on MGB-3 dev set with and
without confusion networks

Supervision re-init no re-init
Separate transcripts 35.97 34.09
Confusion network 35.27 33.65

5.1.3. Improved phone LM for LF-MMI training

A 4-gram phone LM is used to create the denominator FST
for LF-MMI training. In the previous experiments, we used a
combination of phone n-gram counts from both MGB-2 and
MGB-3 corpora (Results repeated in column “1:10” or table
4). This is because the MGB-3 corpus has too less data to esti-
mate a good LM. But we only really need the LM to represent
the MGB-3 transcripts. So we tried to give a higher weight by
a factor 10 to the MGB-3 transcripts compared to the MGB-2
transcripts during phone LM estimation for LF-MMI denom-
inator FST. From column “1:10” of table 4, we see that the
results improved by 0.4% to 33.22% when using confusion
networks. However, we could not get a similar improvement
when using the individual transcripts separately; the perfor-
mance degraded by 0.22% to 34.31%. More experiments are
needed to find the right weights on the two sources, and how
important it is to have the phone LM match the training tran-
scripts. For comparison, we also show results using only the



counts from the targets data in the column “0:1”. With confu-
sion network supervision, this results in a much worse WER
of 36.87%.

Adding sMBR on top of confusion network trained net-
work without reinitializing the final affine component and us-
ing weights of 1:10 for source and target counts during phone
LM estimation, gives around 0.8% absolute improvement to
32.45%.

Table 4. MR-WER (%) results on MGB-3 dev set with dif-
ferent weights (source:target) on counts for phone LM

Weights
Supervision 0:1 1:1 1:10
Separate transcripts 34.09 34.31
Confusion network 36.87 33.65 33.22

+sMBR - - 32.45

6. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the details of JHU’s Kaldi sys-
tem for MGB-3 Arabic ASR Challenge. We used a weights
transfer approach using LF-MMI objective to adapt a TDNN-
LSTM from MGB-2 Arabic TV broadcast corpus to MGB-3
Egyptian YouTube video corpus. Our primary submission,
which is an MBR lattice-combination of sMBR and non-
sMBR systems gave a competitive MR-WER of 32.78% on
the MGB-3 test set. We further improved the system using
a confusion network-type fusion of transcripts from inde-
pendent transcribers to account for orthographic differences.
We also presented our Kaldi implementation of diarization of
long broadcast recordings and retrieval of transcripts for au-
dio segments. This approach is shown to give a performance
competitive with the lightly-supervised transcripts provided
by the challenge organizers.

As future work, we would like to incorporate confidences
into the audio-transcript alignment approach. The language
model should be improved using RNN-LM and we would in-
vestigate methods for adaptation of language model to the
MGB-3 adaptation data. More experiments are needed to
finalize the diarization and segmentation recipes. We need
to test the applicablity of the proposed transfer learning ap-
proach to other datasets and investigate how it would be af-
fected by data mismatch and the amount of data in source and
target domains.
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