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Abstract
Data augmentation is a common strategy adopted to increase
the quantity of training data, avoid overfitting and improve ro-
bustness of the models. In this paper, we investigate audio-level
speech augmentation methods which directly process the raw
signal. The method we particularly recommend is to change the
speed of the audio signal, producing 3 versions of the original
signal with speed factors of 0.9, 1.0 and 1.1. The proposed tech-
nique has a low implementation cost, making it easy to adopt.
We present results on 4 different LVCSR tasks with training
data ranging from 100 hours to 1000 hours, to examine the ef-
fectiveness of audio augmentation in a variety of data scenarios.
An average relative improvement of 4.3% was observed across
the 4 tasks.
Index Terms: speech recognition, data augmentation, deep
neural network

1. Introduction
Data augmentation is a common strategy adopted to increase
the quantity of training data. In [1, 2], corrupting clean training
speech with noise was found to improve the robustness of the
speech recognizer against noisy speech. With deep neural net-
work (DNN) based acoustic modeling, vocal tract length per-
turbation (VTLP) [3], has shown gains on the TIMIT phoneme
recognition task. VTLP was further extended to large vocabu-
lary continuous speech recognition (LVCSR) in [4]. In [5, 6]
the use of data augmentation on low resource languages, where
the amount of training data is comparatively small (∼ 10 hrs),
was investigated. In [5] multiple data augmentation schemes
were combined.

In this paper we report experiments with audio speed per-
turbation. This emulates a combination of tempo perturbation
and VTLP, but we show it to perform better than either of those
two methods.

In our experiments on the Switchboard (SWB) benchmark
task, a 6.7% relative improvement in WER was obtained using
the proposed data augmentation method over a state of the art
DNN setup [7]. We present results on 4 different LVCSR tasks,
with training data ranging from 100 to 960 hours to show the
applicability of the proposed method in various scenarios.

This paper is organized as follows. Section 2 introduces
the speed perturbation technique, Section 3 describes the exper-
imental setup, Section 4 discusses the results and conclusions
are presented in Section 5.

This work was partially supported by NSF Grant No IIA 0530118
and DARPA BOLT Contract No HR0011-12-C-0015.

2. Audio perturbation
In this section we describe a speed-perturbation technique for
data augmentation and compare it with the existing augmen-
tation technique VTLP [3]. Speed perturbation produces a
warped time signal. Given an audio signal x(t), time warp-
ing by a factor α gives the signal x(αt). It can be seen from
the Fourier transform of x(αt), α−1x̂(α−1ω), that the warping
factor produces shifts in the frequency components of the x̂(ω)
by an amount proportional to frequency ω. In [8] it was shown
that this corresponds approximately to a shift of the spectrum
in the mel spectrogram, since the mel scale is approximately
logarithmic. It can be seen that these changes in the mel spec-
trogram are similar to those produced using VTLP. However,
unlike VTLP, speed perturbation results in a change in the du-
ration of the signal which also affects the number of frames in
the utterance.

Speed perturbation differs from VTLP in one other aspect.
When the speed of the signal is reduced, i.e, for α < 1, there
is a shift in the signal energy towards lower frequencies. This
results in FFT bins with close to zero energy at higher frequen-
cies. This likely means that some of the higher Mel bins end up
with very small energies. However this does not seem to cause
a problem in practice.

In order to implement speed perturbation, we resample the
signal using the speed function of the Sox audio manipulation
tool [9].

3. Experimental Setup
We report results on LVCSR tasks in English and Mandarin.
Initial experiments are conducted on the 300 hour Switchboard
(SWB) English conversational telephone speech task and the
observations are validated with the Gale Mandarin data set. We
also present results on the TedLIUM [10] and Librispeech [11]
LVCSR tasks.

For the Switchnoard task, results are presented on the Hub5
’00 evaluation set. This contains 20 conversations from Switch-
board (SWBD) and 20 conversations from CallHome English
(CHE). The CallHome data tends to be harder to recognize,
partly due to a greater prevalence of foreign-accented speech.
In this paper, we present results on both of these subsets as well
as the complete Hub5 ’00 evaluation set.

3.1. Language Model

For the Switchboard task, we use SWB-1 Release 2
(LDC97S62) as the training set, together with the Mississippi



State transcripts1 and the 30Kword lexicon released with those
transcripts. The lexicon contains pronunciations for all words
and word fragments in the training data. We use the first 4K
sentences (about 5 hrs) from the training set as the development
set and Hub5 00 (LDC2002S09) data as a separate test set. A
4-gram language model (LM) is trained2 on 3M words of the
training transcripts, which is then interpolated with another tri-
gram LM trained on 22M words of the Fisher English Part 1
(LDC2004T19) and Part 2 (LDC2005T19) transcripts.

For the Mandarin task, we use GALE Phase 2 Chinese
Broadcast News Speech (LDC2013S08) and the associated
transcripts (LDC2013T20). This data is split into a training set
(about 104 hrs) and a test set (about 6 hrs). A trigram LM is
trained3 on 700K words of the training transcripts.

3.2. Acoustic model

Time-delay neural network (TDNN) based acoustic models [7]
are used in our experiments. These models provide state of the
art performance on various LVCSR tasks. Hence they provide
a strong baseline to verify the gains due to the proposed data
augmentation technique. This TDNN architecture has 4 hidden
layers with layerwise temporal contexts of [−2, 2], {−1, 2},
{−3, 3} and {−7, 2}.

The TDNN uses the p-norm non-linearity [12]. This dimen-
sion reducing non-linearity is a generalization of the max-out
nonlinearity. Given affine transform outputs x(t)i,j indexed by
j at layer i and time t, the activations y(t)i,k are computed as
shown in Equation 1, for a group size G and N p-norm units.

y(t)i,k = (

(k+1)G−1∑
j=kG

|x(t)i,j |p)
1
p (1)

for k ∈ [1, N ]

A group size of 10 and 2-norm were used across all neural
networks in our experiments, based on the observations in [12].
As the p-norm non-linearity has an unbounded output, which
can lead to instabilities in training, each p-norm layer was fol-
lowed by a normalization layer. This layer scales the input vec-
tor by its root mean square value. This layer is applied during
both training and testing.

σ =

√
1

N

∑
k

y(t)2i,k

h(t)i,k = y(t)i,k/σ (2)

Thus the layer scales down the p-norm outputs y(t)i,k to ensure
that the vector h(t)i has a norm of 1. p-norm layers with input
dimension of 2750 were used.

3.2.1. Input features

Mel-frequency cepstral coefficients (MFCCs) ([13]), without
cepstral truncation, were used as input to the neural network. 40
MFCCs were computed at each time index. The input MFCCs
are provided to the neural network over a wide asymmetric tem-
poral context. Different input temporal contexts were explored
in this paper. 100 dimensional i-vectors were also provided as
an input to the network, every time frame to perform instanta-
neous speaker adaptation of the network ([14]).

1Available from: http://www.isip.piconepress.com/
2Location in scripts: egs/swdb/s5c/run.sh
3Location in scriptsg: egs/gale mandarin/s5/run.sh (revision 4970)

3.2.2. Training recipe

The paper follows the training recipe detailed in [12]. It uses
greedy layer-wise supervised training, preconditioned stochas-
tic gradient descent (SGD) updates, an exponentially decreas-
ing learning rate schedule and mixing-up. Parallel training of
the DNNs using up to 18 GPUs was done using the model aver-
aging technique in [15].

The same TDNN architecture was used across all the ex-
periments on the Switchboard task. However the number of
training epochs was varied. The baseline TDNN without data
augmentation was trained for 6 epochs. For TDNNs trained on
augmented data due to increase in training data, the number of
epochs was reduced to keep the overall training time similar to
the baseline system.

3.3. VTLP based data augmentation

In [3] the VTLP warping factors for each utterance is randomly
chosen from a range (e.g. [0.9, 1.1]). Using these sampled
warping factors, improvement was reported on TIMIT phoneme
recognition task. In [4], VTLP was used in large vocabulary
continuous speech recognition (LVCSR) tasks, and an obser-
vation was made that selecting VTLP warping factors from a
limited set of perturbation factors, was better.

In this paper, we follow the VTLP implementation in [4]
with the exception that we use the same warping factors for all
the speakers in the training set. Two sets of warping factors,
{0.9, 1.0, 1.1} and {0.9, 0.95, 1.0, 1.05, 1.1}, are used to cre-
ate 3 and 5 copies of the original feature vectors, respectively.
These two sets of training data were used to train two different
DNN systems, which are tagged as 3-fold and 5-fold systems in
the comparison.

3.4. Tempo perturbation based data augmentaion

Speech rate perturbation, where the speech rate of the audio was
modified by randomly selected factor, was investigated in [6].
In speech rate modification, the tempo of the signal is modified
while ensuring that the pitch and spectral evelope of the signal
does not change. The WSOLA [16] based implementation in
the tempo command of the SoX tool was used to achieve this
perturbation.

Two additional copies of the original training data were cre-
ated by modifying the tempo to 90% and 110% of the original
rate. This creates a 3-fold training set, which is tagged as such
in the comparison tables. Alignments of the tempo modified
data are regenerated using the GMM-HMM system.

3.5. Speed perturbation based data augmentation

To modify the speed of a signal we just resample the signal.
The speed function of Sox was used for this. Two additional
copies of the original training data were created by modifying
the speed to 90% and 110% of the original rate. This creates
a 3-fold training set, which is tagged as such in the compari-
son tables. Due to the change in the length of the signal, the
alignments for the speed perturbed data are regenerated using
the GMM-HMM system.

4. Results and Discussion
Table 1 presents the results on the Switchboard LVCSR task. A
relative improvement of 4.8% was observed on the total Hub5
’00 evaluation set, when using speed perturbed training data.
Speed perturbation was found to be better than VTLP based



Table 1: Results (% WER) for the baseline and speed-perturbed DNN systems on the subsets of the Hub5 00 evaluation set.

System Fold Epochs LM SWB CHE Total
Baseline 1 6 fg 13.7 27.7 20.7
VTLP 3 2 fg 13.1 26.5 19.9
VTLP 5 2 fg 13.2 26.7 20.0

VTLP + time-warp 3 2 fg 13.3 26.8 20.1
Tempo-perturbed 3 2 fg 13.5 27.0 20.3
Speed-perturbed 3 2 fg 13.1 26.1 19.7
Speed-perturbed 3 6 fg 12.9 25.7 19.3

Table 2: Results (% WER) for the baseline and speed-perturbed DNN systems on the GALE Mandarin test set.

System Fold Epochs LM Pitch Total
Baseline 1 6 tg N 18.46
Baseline 1 12 tg N 18.63

Speed-perturbed 3 2 tg N 18.34
Speed-perturbed 3 6 tg N 18.09

Baseline 1 6 tg Y 17.51
Baseline 1 12 tg Y 17.63

Speed-perturbed 3 2 tg Y 17.56
Speed-perturbed 3 6 tg Y 17.16

Table 3: Comparison of baseline and speed-perturbation on various LVCSR tasks with different amount of training data

LVCSR task Hrs of training data WER Rel. improvement
Baseline Speed-perturbed

GALE Mandarin 100 hrs 17.51 17.16 2.0
Tedlium 118 hrs 17.9 17.2 3.9

Switchboard 300 hrs 20.7 19.3 6.7
Librispeech 960 hrs 12.93 12.51 3.2

ASpIRE 5500 hrs 30.8 30.7 0.32

#Iterations
15 55 95 135

lo
g
-l
ik

e
lih

o
o
d

-2.1

-2

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4

baseline: training data
baseline: cross-validation data
speed-perturbed: training data
speed-perturbed: cross-validation data

Figure 1: Average likelihood of training and cross-validation
data across iterations

augmentation. As discussed before, speed perturbation emu-
lates VTLP perturbation combined with time warping of the
feature time indices. However, even a combination of VTLP
and time-warping was not better than the speed perturbed sys-
tem. The addition of time warping to VTLP was actually found
to be detrimental. Additionally, we tried increasing the number
of perturbation factors used in VTLP from 3 to 5; however, this

seemed to be detrimental. We conclude that 3-fold augmenta-
tion of data is sufficient for VTLP systems.

Using tempo perturbation was beneficial compared to the
baseline. However it was not better than either VTLP or speed
perturbation. It is to be noted that tempo perturbation does not
involve perturbation of the log Mel spectral envelopes; on the
other hand both VTLP and speed perturbation involve some per-
turbation of these envelopes.

Figure 1 shows log-likelihood plots on training and cross-
validation data, for baseline and speed perturbed systems. We
found that using speed perturbed training data led to better
generalization, as measured from the difference between frame
likelihoods of training and validation data. DNNs being trained
on speed perturbed data still had a training data likelihood
which was lower than baseline systems. Hence we trained the
speed-perturbed system for few more epochs. This was found
to improve the results. A corresponding increase in the number
of epochs for the baseline system deteriorated the performance
(see Table 2).

Table 3 compares the performance improvement from
speed perturbation across a variety of LVCSR tasks with a vary-
ing amount of training data. It can be seen that data augmenta-
tion was helpful on all the tasks irrespective of amount of train-
ing data. In the ASpIRE far field recognition task, however,
the improvement was much less than the other tasks. This is
a special case because in this task, the data was already aug-
mented to create reverberant copies of training data. Speed per-



turbation was performed on the audio signals before convolving
them with room impulse responses. The minimal gains seen in
this task could be attributed to the fact that reverberation already
created sufficient perturbation in the data in the baseline system.

From Table 2 we can see that the data augmentation tech-
niques also helped in the case of the Gale Mandarin LVCSR
task. Increasing the number of training epochs led to bet-
ter WERs only in the case of speed-perturbed systems. Pitch
and voicing features, when combined with MFCCs, were found
to be helpful in many LVCSR tasks. We extracted these fea-
tures [17] for both baseline and speed-perturbed systems. The
gains due to data augmentation were consistent. Speed pertur-
bation of the training data led to a relative improvement of 2%
on this task.

5. Conclusions
In this paper we presented an audio augmentation technique
with low implementation cost. Speed perturbation, which em-
ulates both VTLP and tempo perturbation, is shown to give
more WER improvement than either of those methods. The ex-
periments were performed using state-of-the-art DNN systems,
with training data ranging from 100 to 960 hours, including a
task where pitch and voicing features were included. However,
we saw very little improvement on the ASpIRE challenge, pos-
sibly because the data had already been augmented by simulated
reverberation.
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