
Results

0 1 2 3 4 5

-3.6

-3.4

-3.2

-3

-2.8

-2.6

-2.4

Epochs

T
ra

in
in

g
 o

b
je

ct
iv

e
fu

n
ct

io
n

Simple NG-SGD, 1 job
Online NG-SGD, 1 job
Online NG-SGD, 2 jobs
Online NG-SGD, 4 jobs
Online NG-SGD, 8 jobs
Online NG-SGD, 16 jobs
Plain SGD, 1 job
Plain SGD, 2 jobs
Plain SGD, 4 jobs

0 50 100 150 200 250

-3.6

-3.4

-3.2

-3

-2.8

-2.6

-2.4

Time (hours)

T
ra

in
in

g
 o

b
je

ct
iv

e
fu

n
ct

io
n

Online NG-SGD, 16 jobs
Online NG-SGD, 8 jobs
Online NG-SGD, 4 jobs
Online NG-SGD, 2 jobs
Online NG-SGD, 1 job
Simple NG-SGD, 1 job
Plain SGD, 1 job
Plain SGD, 2 jobs
Plain SGD, 4 jobs

Data-parallel computation
• Our data parallelization method works on general-purpose

hardware.

• Different nodes access different data

• Periodically average parameters across the nodes.

• We generally do this every 400 000 samples

– This is a couple of minutes, if using GPUs.

• Works surprisingly well even though problem is not convex.

– But only works well if using our NG-SGD method

– We believe NG-SGD stops the parameters “moving too

fast” in certain “problem” directions within the parameter

space.

• If using n machines (e.g. n = 4) we need n times the learn-

ing rate to get the same effective learning rate.

• This eventually limits how many machines we can use

(would eventually get instability).

Experimental setup
• We wanted to demonstrate large-scale parallelization, so

used the Fisher database (1600 hours of speech). Testing

is on a subset of Fisher data.

• That is not a recognized test set, to we offer the following

comparison to confirm that our system is state of the art:

– Andrew Ng’s recent “DeepSpeech” paper reports 12.5%

WER on the Switchboard subset of eval2000, training on

Fisher and Switchboard (was at the time the best pub-

lished number for that setup).

– Our current Kaldi system on that training and test set gets

11.5% WER

– This number does not even include all the best and lat-

est stuff, e.g. sequence-discriminative training and silence

modeling.

• Our model has 4 hidden layers and 10 million parameters

• For this paper we used our own nonlinearity (p-norm) but

since then we’ve started switching to ReLU.

• In this poster we’re just showing convergence plots

– WERs track these closely since training data is huge.

Overview
• Setting: large-scale DNN training (for speech recognition)

• Two key ideas:

– Efficient factored natural gradient version of SGD

– Data parallelization via periodic (~2 mins) model averaging

• Presenting them together because empirically the model-

averaging doesn’t work without NG-SGD.

• Our system is highly competitive (e.g. best single system for

IARPA’s ASpIRE challenge on reverberant speech).

• We have been using these methods for ~2 years.

Natural Gradient
In Natural Gradient SGD (NG-SGD), the SGD update

θt+1 = θt + ηtgt

becomes

θt+1 = θt + ηtF
−1

t gt

where F−1

t is the inverse Fisher matrix estimated given the pa-

rameters on time t (Ft is just the scatter of gradients of training

samples).

• Naı̈vely implemented, extremely slow per step.

• Our implementation only 10-25% slower per step than regu-

lar SGD.

• We use a factorized Fisher matrix (one factor for the input-

space and one for the output-space of each weight matrix).

• Each factor is unit-matrix-plus-low-rank (typical rank: 40).

• We experiment with two methods of estimating the factors:

– “Simple” method estimates each factor from the other

members of the current minibatch

– “Online” method (preferred) keeps low-rank estimates up-

to-date using a forgetting factor.

• Previous work in efficient natural gradient includes TONGA

(low-rank block-diagonal factorization). No experimental

comparison with that here.

Daniel Povey, Xiaohui Zhang & Sanjeev Khudanpur

Johns Hopkins University

Parallel training of DNNs with Natural Gradient and Parameter Averaging

