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Abstract

We describe the neural-network training
framework used in the Kaldi speech recogni-
tion toolkit, which is geared towards train-
ing DNNs with large amounts of training
data using multiple GPU-equipped or multi-
core machines. In order to be as hardware-
agnostic as possible, we needed a way to use
multiple machines without generating exces-
sive network traffic. Our method is to av-
erage the neural network parameters period-
ically (typically every minute or two), and
redistribute the averaged parameters to the
machines for further training. Each machine
sees different data. By itself, this method
does not work very well. However, we have
another method, an approximate and effi-
cient implementation of Natural Gradient
for Stochastic Gradient Descent (NG-SGD),
which seems to allow our periodic-averaging
method to work well, as well as substantially
improving the convergence of SGD on a sin-
gle machine.

1 Introduction

In this paper we introduce two ideas: a data-parallel
training method based on periodically averaging the
parameters of separate SGD runs; and an efficient
and practical implementation of Natural Gradient for
Stochastic Gradient Descent (NG-SGD) for deep neu-
ral networks.

In Section 2 we give some background on our prob-
lem setting, which is Deep Neural Networks (DNNs)
applied to speech recognition– although our ideas are
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more general than this. In Section 3 we introduce the
parallel training method. In Section 4 we describe the
general ideas behind our natural gradient method, al-
though most of the technical details have been rele-
gated to appendices in the Supplementary Material.
In this paper we don’t give any proofs, but we do dis-
cuss in Section 5 what we think we can and can’t be
proven about our methods. Section 6 has experiments,
in which we plot the convergence of SGD with and
without natural gradient and parallelism. We conclude
in Section 7.

There are two versions of our NG-SGD method: a
“simple” version and an “online” one. Technical de-
tails for these are in Appendices A and B respectively.
Appendix C has more background information on our
DNN implementation.

2 Problem setting

When training DNNs for speech recognition, the im-
mediate problem is that of classifying vectors x ∈ R

D

as corresponding to discrete labels y ∈ Y. The dimen-
sion D is typically several hundred, with x being de-
rived from short-time spectral properties of the acous-
tic signal; and Y corresponds to clustered HMM states
of context-dependent phones, |Y| ≃ 5000 being typi-
cal. Each (x, y) pair corresponds to a single frame of
speech data; frames are typically extracted at the rate
of 100 per second, with a duration of 25 milliseconds,
and x contains spectral information from several ad-
jacent frames spliced together [1]. We are ultimately
not just interested in the top y on each frame, but in
the log-probabilities log p(y|x) for all y, since we will
use them as costs in a Viterbi search for a path cor-
responding to the most likely word sequence. The ob-
jective function for training is the sum, over all frames
of training data, of the log-probability of y given x:
∑

i log p(yi|xi). The supervision labels y are derived
from a Viterbi alignment of a Hidden Markov Model
(HMM) derived from the reference word sequence of
each training utterance.
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3 SGD with parameter averaging

3.1 Parameter-averaging overview

The parameter-averaging aspect of our training is
quite simple. We have N machines (e.g. N = 4)
each doing SGD separately with different randomized
subsets of the training data, and we allow their pa-
rameters to gradually diverge. After each machine
has processed a fixed number of samples K (typically
K = 400 000), we average the parameters across all
the jobs and re-distribute the result to the machines.
(In practice we do this by spawning new jobs in Gri-
dEngine or in whatever job management system we
are using). This is repeated until we have processed
all the data for a specified number of epochs, e.g. 10.

We define an outer iteration of training as the time
it takes for each job to process K training examples.
There are one or more outer iterations per epoch, de-
pending on the quantity of training data.

We find it useful to define the effective learning rate
of the parallel SGD procedure as the learning rate ηt
being used by the individual jobs, divided by the num-
ber of jobs N . As we increase the number of jobs N ,
in order to get a linear speed up we need to increase
the learning rate proportional to N so that the effec-
tive learning rate stays the same. We have not done
any very formal analysis on this, but the basic idea is
that when we do the parameter averaging, the param-
eter update from any individual SGD job gets diluted
N -fold.

3.2 CPU versus GPU-based SGD

Each machine in our parallel computation implements
SGD. We have two versions of this, one for GPU and
one for CPU. The GPU-based computation is standard
minibatch-based SGD, typically with 512 examples per
minibatch.

In the CPU-based computation, each job uses a spec-
ified number of threads (typically 16) in order to take
advantage of multi-core processors. Similar to Hog-
wild! [2], we do no parameter locking. In order to pre-
vent divergence, each thread processes relatively small
minibatches - typically, of size 128.

We should mention at this point that in our formu-
lation, we sum the gradients over the elements of the
minibatch, rather than averaging: this ensures that
we make the same amount of progress per sample, re-
gardless of minibatch size, and so gives more consistent
results when changing the minibatch size. The need
to limit the minibatch size in the multithreaded case
can be understood as follows: think of the effective
minibatch size as being the minibatch size times the

number of threads. The product of the learning rate η
with the effective minibatch size is relevant for stabil-
ity of the SGD update: if it becomes too large, there
is increased danger of divergence.

We typically use the GPU-based method, because in
our experience a GPU can process data many times
faster than even a 16-threaded process running on
CPUs. However, aside from speed, the two methods
give very similar results.

3.3 Data organization and sequential data
access

On spinning hard disks, sequential data access can be
orders of magnitude more efficient than random data
access or access to small files. In the Kaldi toolkit [3],
we try very hard to ensure that any high-volume data
access takes the form of sequential reads or writes on
large files.

For neural network training, we keep data access se-
quential by dumping pre-randomized “training exam-
ples” to disk. Each training example corresponds to
a class label together with the corresponding input
features, including left and right temporal context as
needed by the network. The randomization is done
just once for the entire data, and the data is accessed
in the same order on each epoch. This is probably
not ideal from the point of view of the convergence of
SGD, but our expectation is that for large amounts of
data the same-order access will not affect the results
noticeably.

We break up the training data into N by M rougly
equal-sized blocks, where N is the number of parallel
jobs, specified by the user (typically 4 ≤ N ≤ 8),
and M ≥ 1 is the number of “outer iterations per
epoch”, which is chosen to ensure that the number
of samples processed per iteration is close to a user-
specified value K (e.g. K = 400 000). The process of
randomly distributing the data into N by M blocks,
and ensuring that the order is randomized within each
block, is done in parallel; we won’t give further details
here, because the problem is straightforward and there
is nothing particularly special about our method.

3.4 Other aspects of our SGD
implementation

At this point we provide some more details of other
relevant features of our SGD implementation, namely
the learning rate schedule and the way we enforce a
maximum parameter change to prevent divergence.

There are some other, less directly relevant issues
which we have relegated to Appendix C: namely,
generalized model averaging (C.2), mixture com-
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ponents a.k.a. sub-classes (C.3), input data nor-
malization (C.4), parameter initialization (C.5), se-
quence training (C.6), and online decoding with iVec-
tors (C.7).

3.4.1 Learning rate schedule

It was found in [4] that when training DNNs for speech
recognition, an exponentially decreasing learning rate
works well, and we independently found the same
thing. We generally use a learning rate that decreases
by a factor of 10 during training, on an exponential
schedule. Unless mentioned otherwise, for experiments
reported here the learning rate starts at 0.01 and ends
at 0.0001. We specify the number of epochs in ad-
vance; it is typically a number in the range 4 to 20 (if
we have more data, we train for fewer epochs).

3.4.2 Maximum parameter change

A common pathology when doing SGD for deep learn-
ing is that during training, the parameters will sud-
denly start getting very large and the objective func-
tion will go to negative infinity. This is known as pa-
rameter divergence. The normal solution is to decrease
the learning rate and start the training again, but this
is a very inconvenient. To avoid this pathology, we
modified the SGD procedure to enforce a maximum
parameter change per minibatch. This limit tends to
be active only early in training, particularly for layers
closer to the output. We have provided further details
on this in Appendix C.1.

4 Natural gradient for SGD

In this section we describe our natural-gradient modi-
fication to SGD, in which we scale the gradients by a
symmetric positive definite matrix that is an approxi-
mation to the inverse of the Fisher matrix.

Technically speaking, Natural Gradient means taking
a step along the gradient of a Riemannian parame-
ter surface, which follows a curving path in conven-
tional parameter space and which is extremely hard to
compute. However, previous work [5, 6] has used the
term “Natural Gradient” to describe methods like ours
which use an an approximated inverse-Fisher matrix
as the learning rate matrix, so we follow their prece-
dent in calling our method “Natural Gradient”.

4.1 We can replace the scalar learning rate
in SGD with a matrix

In SGD, the learning rate is often assumed to be a
scalar ηt, decreasing with time, and the update equa-

tion is something like

θt+1 = θt + ηtgt

where gt is the objective-function gradient sampled
on time t (e.g. computed from a training sample or
a minibatch). However, it is possible to replace this
scalar with a symmetric positive definite matrix, and
we can write instead:

θt+1 = θt + ηtEtgt (1)

with Et the matrix component of learning-rate; it is
more convenient for proofs to keep ηt separate rather
than absorbing it into Et. It acceptable for Et to be
random: if we can bound the eigenvalues of Et above
and below, by positive constants known in advance,
and Et and gt are independently sampled given the
parameter θ, then we can prove convergence under the
same kinds of conditions as if we were using a scalar
learning rate [7, Sec. 4.2.2]

In general, the learning-rate matrix should not be a
function of the data sample which we are currently
processing, or it may prevent convergence to a local
optimum. As an example of this, a matrix that was
systematically smaller for a particular type of training
data would clearly bias the learning by downweighting
that data.

4.2 The inverse Fisher matrix is a suitable
learning-rate matrix

There are reasons from statistical learning theory, re-
lated to the Natural Gradient idea [8], why we may
want to set the learning-rate matrix Et to the inverse
of the Fisher information matrix. See for example, [9]
and [6]. The Fisher matrix is most directly defined
for situations where we are learning a distribution, as
opposed to classification problems such as the current
one. Suppose x, which may be discrete or continuous,
is the variable whose distribution we are modeling, and
f(x; θ) is the probability or likelihood of x given pa-
rameters θ, then the Fisher information matrix I(θ)
is defined as the expected outer product (second mo-
ment) of the derivative of the log-probability w.r.t. the
parameters, i.e. of

∂

∂θ
log f(x; θ).

This derivative is called the “score” in information the-
ory. Part of the justification for this use of the Fisher
matrix is that, under certain conditions, the Fisher
matrix is identical to the Hessian; and it is obvious
why the inverse Hessian would be a good gradient de-
scent direction. These conditions are quite stringent,
and include that the model is correct and θ is at the
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value corresponding to the true data distribution; but
even if these conditions do not apply, the Fisher in-
formation matrix is in some sense “dimensionally” the
same as the Hessian– that is, it transforms the same
way under changes of parameterization– so its inverse
may still be a good choice of learning-rate matrix.

It is quite easy to generalize the notion of the Fisher
matrix to a prediction task p(y;x, θ). We write
p(y, x; θ) = q(x)p(y;x, θ) for a data distribution q(x)
that we assume to be independently known (and not
a function of θ). It is not hard to see that the score
equals just ∂

∂θ
log f(x; y, θ); since q(x) does not depend

on θ, there is no additional term involving q(x). The
expectation that we take when computing the Fisher
matrix is taken over the joint distribution of x and y.
This argument also appears in [6, Section 3].

Still more generally, we can compute a quantity that
is analogous to Fisher matrix for any objective func-
tion, even one that does not represent a log-probability
or log-likelihood; and we will still have a matrix that
transforms in the same way as the Hessian under
changes of variables - i.e. its inverse may still be a
reasonable choice for a learning-rate matrix.

4.3 We need to approximate the Fisher
matrix in practice

For large-scale problems, such as DNNs for speech
recognition with millions of parameters, even one in-
version of the Fisher matrix is impractical because it
would take time O(n3) in the parameter dimension.
However, it may be practical to deal with factored
forms of it. There has been previous literature on
this. In [6], the Fisher matrix was divided into di-
agonal blocks and each block was approximated by
a low-rank matrix. The idea of diagonal blocks was
also explored in [10], with one block per weight ma-
trix; our approach uses the same idea. In the unpub-
lished manuscript [11] (some of the material in which
was later published in [5]), the authors attempted to
show analytically that under certain quite strong as-
sumptions, the Fisher matrix for a single-hidden-layer
neural network has the form of a Kronecker product.
Although we are skeptical of this, and anyway we are
interested in more general networks than they consid-
ered, the Kronecker product does also appear in our
factorization of the Fisher matrix.

We should note that there are ways to use Natural Gra-
dient without factorizing the Fisher information ma-
trix, if one is willing to accept a significantly increased
time per iteration. See for example [12], which uses a
truncated Newton method to approximate multiplica-
tion by the inverse of the Fisher matrix.

4.4 Our factorization of the Fisher matrix

Our factored form of the Fisher matrix is as follows:
given a neural network with I weight matrices, we di-
vide the Fisher matrix into I diagonal blocks, one for
each weight matrix. Consider the i’th diagonal block
of the Fisher matrix, corresponding to the parameters
of a weight matrix Wi, and assume that there is no
separate bias term (we can append a 1 to the inputs
and include the bias term in the weight matrix). The
i’th block of the Fisher matrix is a Kronecker product
of two symmetric positive definite matrices: Ai, whose
dimension is the input (row) dimension ofWi, andBi,
whose dimension is the output (column) dimension of
Wi. We further factorize the matrices Ai and Bi as a
low-rank symmetric matrix plus a multiple of the iden-
tity matrix. We write the approximated Fisher matrix
in the form

F = diag (A1 ⊗B1,A2 ⊗B2, . . . ,AI ⊗BI) (2)

where Ai and Bi are each factorized in the form
λI +XXT . The order in which Ai and Bi appear in
the Kronecker product depends on the way in which
we vectorize the weight matrices– row-wise or column-
wise. In practice we don’t ever deal explicitly with
these Kronecker products or vectorized weight matri-
ces in the algorithm, so this choice doesn’t matter. It
is not hard to show that if the Fisher matrix can be
factored this way, then its inverse can be factored the
same way.

4.5 How we estimate the Fisher matrix

We have two different methods for estimating the fac-
torized Fisher matrix:

• Simple method: We estimate the Fisher matrix
from the other samples in the minibatch we are
currently training on, holding out the current
sample to avoid bias. This can be done surpris-
ingly efficiently. Details are in Appendix A.

• Online method: We estimate the Fisher matrix
from all previous minibatches, using a forgetting
factor to downweight minibatches that are distant
in time. Details are in Appendix B.

We generally use the online method as it is significantly
faster on GPUs and usually seems to lead to faster
learning, probably due to the less noisy estimate of the
Fisher matrix. We describe the simple method because
it is easier to understand and helps to motivate the
online method.
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4.6 Operation on vectors

Although we describe our Fisher matrix as as a Kro-
necker product, we do not have to explicitly construct
this product in our code.

Suppose that we process the training examples one at
a time. The SGD update for the i’th weight matrix is:

Wti = Wt−1,i + ηtxtiy
T
ti

where xti is the input to the i’th weight matrix com-
puted at the current sample, and yti is the derivative
of the objective function with respect to the output
of the i’th weight matrix. These quantities naturally
occur in backpropagation.

In our natural gradient method, this is modified as
follows:

Wti = Wt−1,i + ηtA
−1
ti xtiy

T
tiB

−1
ti ,

where Ati and Bti are factors of the Fisher matrix. It
is easy to show that this is equivalent to multiplying
the parameter step by the inverse of the Fisher ma-
trix formed from the A and B quantities as in Equa-
tion (2).

4.7 Operation on minibatches

Rather than processing training examples one at a
time, we process them in minibatches (e.g. 512 at
a time). Instead of vector-valued derivatives xti and
yti, we now have matrices Xti and Yti, each row of
which corresponds to one of the x or y quantities (t is
now the index for the minibatch). The update is now
as follows:

Wti = Wt−1,i + ηtX
T
tiYti (3)

and note that unlike some authors, we don’t divide the
gradients by the minibatch size– this makes it easier
to tune the minibatch size and learning rate indepen-
dently. The update now has the form

Wti = Wt−1,i + ηtX̄
T
tiȲti, (4)

with the bar indicating modified X and Y quantities.
In the online version of our natural gradient method,
we can write these as:

X̄ti = XtiA
−1
ti (5)

Ȳti = YtiB
−1
ti , (6)

but in the simple method, because the A and B ma-
trices are estimated from the other elements in the
minibatch, we can’t write it this way– it is a separate
matrix multiplication for each row of X and Y– but it
can still be computed efficiently; see Appendix A.

In programming terms, we can describe the interface
of the core natural-gradient code as follows:

• Simple method: Given a minibatch of vectors Xti

with each row being one element of the minibatch,
estimate the Fisher-matrix factors by holding out
each sample, do the multiplication by their in-
verses, and return the modified vectors X̄ti.

• Online method: Given a minibatch of vectors Xti

and a previous Fisher-matrix factor At−1,i, com-
pute X̄ti = XtiA

−1
t−1,i and the updated Fisher-

matrix factor Ati.

The interface of the natural gradient code works the
same with the Y and B quantities, as with X and A.
We call the interface above 2I times for each mini-
batch: twice for each weight matrix in the network.

4.8 Scaling the factors

In both natural gradient methods, we want to pre-
vent the Fisher-matrix multiplication from affecting
the overall magnitude of the update very much, com-
pared with the step-sizes in standard SGD. There are
several reasons for this:

• Early in training, the x and y quantities may
be very small or zero, leading to huge or infinite
inverse-Fisher matrices.

• The conventional convergence-proof techniques
require that the matrix component of the learn-
ing rate matrix should have eigenvalues bounded
above and below by constants known in advance,
which we cannot guarantee if we use an unmodi-
fied Fisher matrix.

• Empirically, we have found that it is hard to pre-
vent parameter divergence if we use the real, un-
scaled Fisher matrix.

Our method is to scale the X̄ti and Ȳti quantities so
that they have the same Frobenius norm as the corre-
sponding inputs Xti and Yti. We will introduce nota-
tion for this in the Appendices.

This scaling introduces a slight problem for conver-
gence proofs. The issue is that each sample can now
affect the value of its own learning-rate matrix (via the
scalar factor that we use to rescale the matrices). As
we mentioned before, it is not permissible in general
to use a per-sample learning rate that is a function of
the sample itself. However, we don’t view this as a
practical problem because we never use a minibatch
size less than 100, so the resulting bias is tiny.
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4.9 Smoothing the Fisher matrix factors
with the identity

In both versions of NG-SGD, we smooth our estimates
of the factors of the Fisher matrix by adding a multiple
of the identity matrix before inverting them. In the
simple method this is necessary because in general the
Fisher matrix estimated from the minibatch will not
be full rank. In the online method it is not strictly
necessary because we deal with a factorization of the
Fisher matrix that already contains a multiple of the
unit matrix, but we found that by adding an additional
multiple of the unit matrix, as for the simple method,
we can improve the convergence of the SGD training.
In both cases the smoothing is of the following form. If
S ∈ R

D×D is a Fisher matrix factor estimated directly
from data as the uncentered covariance of the x or y
quantities, then instead of using S as the Fisher-matrix
factor A or B, we use instead S+ βI, where

β = α
D
max(tr (S), ǫ) (7)

where ǫ = 10−20 is used to stop the smoothed S from
ever being exactly zero. That is, we smooth the Fisher
with the identity matrix scaled by α times the average
diagonal element of S. We found in tuning experi-
ments that the relatively large value α = 4 is suitable
under a wide range of circumstances, for both the sim-
ple and online methods, and even for settings where
the noise in S should not be a big problem– e.g. for
large minibatch sizes. Our interpretation is that when
α is fairly large, we are using a smaller than normal
learning rate only in a few directions where the x or y
quantities have quite high covariance, and a relatively
constant learning rate in all the remaining directions.

5 What we think we can, and can’t,

prove

Although this is not a theoretical paper, we would like
to say what we think is, and is not, possible to prove
about our methods.

5.1 Our factorization of the Fisher matrix

If we assume that the distribution of the x and y quan-
tities is Gaussian and independent (between x and y
for a single layer, and between layers), then it should
not be hard to show that the Fisher matrix has the
form of (2), where the Ai and Bi quantities corre-
spond to the uncentered covariances of the x and y
quantities, and that the inverse-Fisher has the same
form, with the A−1

i replacing Ai and B−1
i replacing

Bi.

We don’t believe that the Fisher matrix would have
this exact form in practice, but we do believe that it’s

a reasonable factorization. One could try to show this
experimentally as follows, for a small task. One could
make a linear change of variables to make our approx-
imated Fisher matrix equal the unit matrix, and then
try to measure the eigenvalue distribution of the full
Fisher matrix in the new co-ordinates. We believe that
the eigenvalue distribution of the transformed Fisher
matrix would probably be much more closerly centered
around 1 than before the change of variables. Our mo-
tivation for this work is a practical one, so we have not
allocated effort towards this type of experiment.

5.2 The convergence of our preconditioned
SGD procedure

Regarding the convergence of SGD using our factored-
Fisher learning rate matrices, the most we think is
provable is that a slightly modified form of this method
would converge under similar conditions to unmodified
SGD. The smoothing with constant α > 0 can give us
a bound on the ratio of the largest to smallest eigen-
values of the A and B factors; using this together with
the rescaling of Section 4.8, we can bound from above
and below the eigenvalues of the rescaledA and B fac-
tors. By multiplying these together, we can get lower
and upper bounds on the eigenvalues of the overall
inverse-Fisher matrix that we use as the learning-rate
matrix Et.

It is necessary for the Fisher matrix to be randomly
chosen independent of the identity of the current sam-
ple. Unfortunately this is not quite true due to the
rescaling being done at the minibatch level; we men-
tioned in Section 4.8 that this would be a problem
for proofs. As mentioned, it would be easy to use the
rescaling factor from the previous minibatch; this gives
us back the independence, but at the cost of no longer
having such easy bounds on the upper and lower eigen-
values of the rescaled A and B factors. Alternately,
one could keep the algorithm as it is and try to prove
instead that the parameter value we converge to will
not differ very much in some sense from an optimum
of the true objective function, as the minibatch size
gets large.

5.3 Online update of a low-rank covariance
matrix

There might be some interesting things to say about
our online natural gradient method, described in Ap-
pendix B, in which estimate the uncentered covariance
matrices A and B in a factored form as λI + XXT .
Our online estimation of the covariance matrices in-
volves multiplying X by a weighted combination of
(a) the observed covariance matrix from the current
minibatch, and (b) the previous value of our factored
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approximation to it; it is like a matrix version of the
power method [13].

Probably the analysis would have to be done initially
in the steady state (i.e. assuming the parameter vec-
tor θ is constant). If in addition we assume infinite
minibatch size so that the covariance matrix equals its
expected value, we are confident that we could show
that the only stable fixed point of our update equations
gives us in some suitable sense the closest approxima-
tion to the covariance; and, with a little more effort,
that our updates will converge with probability 1 to
that best approximation.

The analysis for finite minibatch size would have to in-
volve different methods. Because of the noise and the
finite forgetting factor, we would never converge to
the true value; but it might be possible to define some
objective function that measures some kind of good-
ness of approximation, and then say something about
the convergence of the distribution of that objective
function. Our update method is invariant to orthog-
onal transformations of the vectors whose covariance
we are approximating, so we can easily reduce to the
diagonal-covariance case to make analysis easier.

6 Experiments

We show experiments on a speech recognition setup
called Fisher English 1, which is English-language con-
versational telephone speech, sampled at 8kHz, and
transcribed in a quick but relatively low-quality way.
The total amount of training data is 1600 hours (only
including transcribed segments, i.e. not the silent
other half of the telephone conversation). We test on
a held-out subset of the data, about 3.3 hours long,
that we defined ourselves.

6.1 System details and Word Error Rate
performance

Table 1: Word Error Rates (Fisher dev set)

Model %WER
GMM 31.07
DNN1 23.66
DNN2 23.79

Our main results are convergence plots, but to give the
reader some idea of the ultimate results in Word Error
Rate, we show some results in Table 1. The Word
Error Rates may seem on the high side, but this is

1Linguistic Data Consortium (LDC) catalog num-
bers LDC2004S13, LDC2005S13, LDC2004T19 and
LDC2005T19

mainly due to the difficulty of the data and the quick
transcription method used on this data.

The GMM system is based on MFCC features, spliced
across ±3 frames and processed with LDA+MLLT to
40-dimensional features, then adapted with feature-
space MLLR (fMLLR) in both training and test time.
See [3] for an explanation of these terms and the nor-
mal system build steps. All these systems used the
same phonetic context decision tree with 7 880 context-
dependent states; the GMM system had 300 000 Gaus-
sians in total.

The DNN1 system is built and tested on top of the
speaker-adapted features, so it requires a first pass
of decoding and adaptation with the GMM system.
The 40-dimensional features from GMM1 are spliced
across ±4 frames of context and used as input to the
DNN. DNN1 is a p-norm DNN [14] with 5 hidden lay-
ers and p-norm (input, output) dimensions of (5000,
500) respectively, i.e. the nonlinearity reduces the di-
mension tenfold. We use 15 000 “sub-classes” (see Sec-
tion C.3 for explanation), and the number of param-
eters is 19.3 million. It is trained for 12 epochs with
learning rate varying from 0.08 to 0.008, trained with
8 parallel jobs with online natural gradient SGD (NG-
SGD). For both this and the DNN2 system, we trained
with K = 400 000 samples per outer iteration for each
machine.

The DNN2 system is trained for our online decoding
setup (see Appendix C.7), which is geared towards
applications where reduced latency is important and
audio data must be processed strictly in the order
it is received. The input features are equivalent to
unadapted, un-normalized 40-dimensional log-mel fil-
terbank features, spliced for ±7 frames, plus a 100-
dimensional iVector representing speaker characteris-
tics, extracted from only the speaker’s audio up to and
including the current time. For the results shown here,
we include previous utterances of the same speaker in
the same conversation when computing the iVector.
Because this system is intended for real-time decoding
on a single CPU, we limit the number of parameters
by using only 4 hidden layers, p-norm (input, output)
dimensions of (350, 3500), and 12 000 sub-classes, for
a total of 10.4 million parameters. It was trained us-
ing online NG-SGD with 6 parallel jobs for 5 epochs,
with the learning rate decreasing exponentially from
0.01 to 0.001. All our experiments below are based on
this setup.

Our server hardware is fairly typical: the majority of
them are Dell PowerEdge R720 servers with two In-
tel Xeon E5-2680v2 CPUs having with 10 cores each,
running at 2.8GHz; and with a single NVidia Tesla
K10 GPU card, providing two GPUs– each GPU cor-
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responds to a single machine in our notation, and it
becomes incidental that they are co-located. We also
have some similar machines with K20 GPU cards, and
when reporting time taken, we report the slightly more
optimistic figures obtained from running the same jobs
on the faster K20 GPUs.

6.2 Convergence plots

Our main result is in Figure 1 (best viewed in color),
where we plot the objective function versus amount
of training data processed, for our parallel training
method with and without natural gradient, and with
1, 2, 4, 8 and 16 jobs. In order to keep the effective
learning rate (Section 3.1) constant, we make the ini-
tial/final learning rates proportional to the number of
jobs, with the default learning rates of 0.01 to 0.001
corresponding to the 6-job case. We only show the
first 3 epochs of our 5-epoch training procedure; lines
that end earlier are unfinished experiments.

Our natural gradient method always helps– the NG-
SGD curves are all above the plain-SGD curves. Also,
when using online natural-gradient, all the curves
shown in Figure 1 are close to each other, i.e. af-
ter processing the same amount of data with differ-
ent numbers of jobs we get about the same objective
function; however, the 8- and 16-job runs converge a
little slower. Thus, for small N we are getting a linear
speed up in the number N of machines, because the
time taken per epoch is proportional to 1/N . As N
gets larger than around 4 we need more epochs to get
the same improvement, so the speedup becomes sub-
linear. The plot also shows that the simple and online
natural gradient converge about the same (only tested
with one job).

Figure 2 shows these same plots with time as the x-
axis. This is a simulated clock time, obtained by mul-
tiplying the time taken for each “outer iteration” of
training, by the number of outer iterations; the actual
clock time depends on queue load. The time per outer
iteration was 88 seconds for plain SGD, 93 seconds for
online NG-SGD, and 208 seconds for plain NG-SGD,
all measured on a K20 GPU. The circles mark the end
of training, after 5 epochs (some experiments were not
run to completion).

7 Conclusions

We have introduced an efficient Natural Gradient ver-
sion of SGD training (NG-SGD). We have shown ex-
perimentally that not only does the method improve
the convergence versus plain SGD, it also makes it pos-
sible for us to to use very simple parallelization method
where we periodically average parameters from multi-
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ple SGD runs. Although we only show results from
one setup, we are confident based on past experience
that it holds true for other types of neural network and
improves our final results (Word Error Rate) as well
as convergence speed.

We do not have a very good explanation why our par-
allel training method only works when using Natural
Gradient, except to say that the statements in [12] that
NG prevents large parameter steps and is more robust
to reorderings of the training set, may be relevant.
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A Further details on simple natural

gradient method

A.1 Overview of simple natural gradient
method

In this section we describe the natural gradient method
that uses the other elements of the minibatch to esti-
mate the factors of the Fisher matrix.

As mentioned in Section 4.7, the interface can be de-
scribed as follows. Given a matrix X, each row of
which represents one element of the minibatch (and
with a number of columns corresponding to either the
row or column dimension of one of the weight matrices
in the network), do the inverse-Fisher multiplication
for each row xi of X and return the modified matrix
X̄.

The core of the inverse-Fisher multiplication is this: let
x̄i = F−1

i xi, where Fi is the Fisher matrix estimated
from the other rows of X, i.e. if N is the minibatch
size, then Fi =

1
N−1

∑

j 6=i xjx
T
j . We extend this ba-

sic idea by adding smoothing of Fi with the identity
matrix, and by scaling the output X̄ to have the same
Frobenius norm as the input.

A.2 Details of method (not considering
efficiency)

In this section we describe what we compute in our
“simple” natural gradient method, without consider-
ing how to compute it efficiently. As described in Sec-
tion 4.9, we smooth the Fisher matrix with the iden-
tity. Defining

β = αmax(tr (XTX), ǫ)/(ND) (8)

where our normal settings are α = 4 and ǫ = 10−20,
and N and D are the number of rows and columns
respectively of X, we define smoothed Fisher matrices
as follows, to be applied to each row xi of X:

Gi =



βI+
1

N − 1

∑

j 6=i

xjx
T
j





−1

(9)

For each row i we will then define

x̂i = G−1
i xi (10)

and then the result of our computation will be

X̄ = γX̂ (11)

where the rescaling factor γ, intended to make sure
that X̄ has the same Frobenius norm as the input X,
is defined as

γ =

√

tr (XTX)/tr (X̂T X̂). (12)

If the denominator of the above is zero, we take γ to
be one.

We should note that by computing the scalars β and
γ without “holding out” the current sample, we are
violating the rule that the randomly sampled learn-
ing rate matrix should be independent of the current
sample. However, since we always use a fairly large
minibatch size (at least 100) and these are only scalar
quantities, we don’t believe the small amount of “con-
tamination” that takes place here will significantly bias
the training. In fact, it might not turn out to be very
difficult to modify the equations to properly hold out
the current sample for these purposes, but because we
don’t believe it would perceptibly affect the results, we
haven’t gone to the trouble of doing this.

A.3 Efficient computation in simple method

We now describe how we efficiently compute what we
described above. Define the smoothed Fisher matrix

G =
(

β I+ 1
N−1X

TX
)

, (13)

which is like the Gi quantities but without holding out
the current sample. Next, compute

Q = XG−1, (14)

where Q only differs from X̂ by xi not being held out
from the corresonding Gi. There are two equivalent
methods to compute Q:

(i) In column space:

Q = X
(

βI+ 1
(N−1)X

TX
)−1

(ii) In row space:

Q =
(

βI+ 1
(N−1)XXT

)−1

X

We derived the rather surprising row-space version of
the formulation by expanding the inverted expression
on the right of the column-space expression using the
Morrison-Woodbury formula, and simplifying the re-
sulting expression.

For efficiency, we choose method (i) above if the mini-
batch size is greater than the dimension (N > D), and

method (ii) otherwise. Our formula below for X̂ is de-
rived by expressing each G−1

i as a rank-one correction
to G−1, and computing the corresponding correction
by which each row x̂i differs from the corresponding
row qi of Q. It turns out that the correction is in the
same direction as qi itself, so x̂i just becomes a scalar
multiple of qi. Defining, for each row-index i,

ai = xT
i qi, (15)
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and defining the scalar factor

bi = 1 + ai/(N−1−ai), (16)

then we can use the following efficient formula: for
each row x̂i of X̂,

x̂i = biqi. (17)

We then get the output X̄ by scaling X̂ by γ, as de-
scribed above.

When working on CPUs with small minibatch sizes
(e.g. N = 128) and large hidden-layer dimensions
(e.g. D = 1000), the computation above is very effi-
cient, and does not comprise more than about 20% of
the time of the overall backprop computation. How-
ever, when using GPUs with larger minibatch sizes
(e.g. N = 512) it can take the majority of the time.
Even though it typically takes considerably less than
half of the total floating point operations of the overall
computation, it contains a matrix inversion, and ma-
trix inversions are not very easy to compute on a GPU.
Our “online” method which we will describe below is
designed to solve this efficiency problem.

B Further details on online natural

gradient method

B.1 Overview of online natural gradient
method

The interface of the online natural-gradient method is
essentially the same as the simple method: the user
provides a matrix X, and we return a matrix X̄ that’s
been multiplied by the inverse-Fisher and then rescaled
to have the same Frobenius norm as X. Again, each
row of X corresponds to an element of the minibatch
and the column dimension corresponds to the row or
column dimension of one of the weight matrices. A
difference from the simple method is that the online
method is “stateful”, because we maintain a running
estimate of the Fisher matrix. Each time we process
a minibatch, we use the Fisher matrix estimated from
the previous minibatches; and we then update that es-
timate using the current minibatch. For a single neural
net, the number of separate copies of this “state” that
we need to maintain corresponds to twice the number
of trainable weight matrices in the neural net: one for
each of the Ai and Bi quantities in Equation (2).

Let the input be X ∈ R
N×D, where N is the minibatch

size (e.g. 512) and D is the row or column size of the
weight matrix we’re updating (e.g. 2000). We intro-
duce a user-specified parameter R < D which is the
rank of the non-identity part of the Fisher matrix. Let
the subscript t = 0, 1, . . . correspond to the minibatch.

Define

Ft
def
= RT

t DtRt + ρtI (18)

where Rt ∈ R
R×D, Dt ∈ R

R×R and ρt > 0 will be
estimated online from data; Rt has orthonormal rows
and Dt is diagonal and nonnegative. We’ll estimate
these quantities online from the data with the aim be-
ing that Ft should be a good estimate of the covariance
of the rows of the Xt quantities.

We define Gt to be a kind of “smoothed” version of Ft

where we add in more of the unit matrix, controlled by
the α parameter we’ve previously discussed (normally
α = 4):

Gt
def
= Ft +

αtr (Ft)

D
I. (19)

and then the output will be:

X̄t = γtXtG
−1
t (20)

where γt is computed so as to ensure that the Frobe-
nius norm of X̄t equals that of Xt:

γt =

√

tr (XtXT
t )/tr (XtG

−1
t G−1

t XT
t ), (21)

or γt = 1 if the denominator of the above equation is
0.

B.2 Updating our low-rank approximation to
the variance

Next we discuss the method we use to estimate our
low-rank approximation Ft of the uncentered covari-
ance of the rows of the inputs Xt. Define

St
def
= 1

N
XT

t Xt (22)

as the uncentered covariance of the rows of Xt. We
introduce a user-specified “forgetting factor” 0 < η <
1 (we describe how this is set in Section B.4), and we
define

Tt
def
= ηSt + (1 − η)Ft. (23)

We will try to set Ft+1 to be a good low-rank approx-
imation to Tt. The obvious way would be to make
Dt+1 correspond to the top eigenvalues ofTt andRt+1

to the corresponding eigenvectors, but this would be
too slow. Instead we use a method inspired by the
power method for finding the top eigenvalue of a ma-
trix. On each iteration we compute

Yt
def
= RtTt, (24)

with Yt ∈ R
R×D. It is useful to think of Yt as con-

taining each eigenvector scaled by its corresponding
eigenvalue in Tt (of course, this is true in a precise
sense only at convergence). Our update uses symmet-
ric eigenvalue decomposition of YtY

T
t to find these
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scaling factors (they are actually the square roots of
the eigenvalues of YtY

T
t ), puts them on the diago-

nal of Dt+1, and puts the corresponding eigenvectors
in the rows of Rt+1. We then have to work out the
correct amount of the unit-matrix to add into our fac-
torization of the covariance matrix (i.e. set ρt+1) and
subtract that amount from the diagonals of Dt+1. We
will give equations for this below.

Observant readers might have noted that it would
seem more straightforward do do a Singular Value
Decomposition (SVD) on Yt instead of a symmetric
eigenvalue decomposition on YtY

T
t . We do it this way

for speed.

The details of our update are as follows:

Zt
def
= YtY

T
t , (25)

so Zt ∈ R
R×R. Then do the symmetric eigenvalue

decomposition

Zt = UtCtU
T
t , (26)

with U orthogonal and Ct diagonal. The diagonal
elements of Ct are positive; we can prove this using
ρt > 0 (which makes Tt positive definite) and using
the fact that Rt has full row rank. We define Rt+1 as:

Rt+1
def
= C−0.5

t UT
t Yt (27)

If we expand out Rt+1R
T
t+1 using (27), it is easy to

see that it reduces to the identity, hence Rt+1 has
orthonormal rows. In order to make sure that Ft+1 has
the desired covariance in the directions corresponding
to the rows of Rt+1, we will set

Dt+1
def
= C0.5

t − ρt+1I, (28)

but note that at this point, ρt+1 is still unknown.
When we say the “desired covariance”, we are ensur-
ing that for each dimension r corresponding to a row
ofRt+1, the value of the inner product r

TFt+1r equals
that of rTTtr, but this is only precisely true at con-
vergence.

We choose ρt+1 in order to ensure that tr (Ft+1) =
tr(Tt). This value can be worked out as:

ρ′t+1 = 1
D−R

(

ηtr (St)+(1−η)(Dρt+tr (Dt))−tr (C
0.5
t )
)

(29)
We then let

ρt+1 = max(ǫ, ρ′t+1) (30)

for ǫ = 10−10; this is is to ensure that if we get a
sequence of zero inputs, ρt will not become exactly
zero in its machine representation.

B.3 Efficient computation

The previous section described what we are comput-
ing in the online natural gradient method; here we
describe how to compute it efficiently. The essential
idea here is to reduce the multiplication by G−1 to two
multiplications by a “fat” matrix (of dimension R×D).
Since typically R is much smaller than D, this is quite
efficient. We also address how to efficiently keep these
matrices updated, at the level of optimizing the matrix
expressions. This section is mostly derivation, and will
likely only be of interest to someone who is considering
implementing this method. In Section B.5 below, we
will summarize the algorithm we derive here.

We can write Gt as:

Gt
def
= Ft +

αtr (Ft)
D

I (31)

= RT
t DtRt + βtI (32)

where

βt
def
= ρt +

α
D
tr (Ft) (33)

= ρt(1 + α) + α
D
tr (Dt) (34)

Define

X̂t
def
= βtXtG

−1
t , (35)

where the factor of βt is inserted arbitrarily to simplify
the update equations; a scalar factor on X̂ doesn’t
matter because we will later rescale it to have the same
norm as X. The output of this whole process is

X̄t
def
= γtX̂t, where (36)

γt
def
=

√

tr (XtXT
t )/tr (X̂

T
t X̂t), (37)

where, in the expression for γt, if the denominator is
zero we take γt = 1. Note: γt is not the same as in (21)
because of the arbitrary factor of βt, so consider (21)
to be superseded by (37). To efficiently compute (35),
we apply the Woodbury matrix identity to (31), giving
us

G−1
t =

1

βt

(

I−RT
t EtRt

)

(38)

where

Et
def
=

1

βt

(

D−1
t +

1

βt

I

)−1

(39)

with elements

etii =
1

βt/dtii + 1
(40)

In order to reduce the number of matrix multiplies,
it is useful to break the expression RT

t EtRt into two
equal parts, so we define

Wt
def
= E0.5

t Rt, (41)
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and we will never store Rt; instead, we will work with
Wt and the small diagonal factors Dt and Et. We can
now write the following, which is where most of our
computation will take place:

X̂t = Xt −XtW
T
t Wt (42)

You may recall the symmetric matrix Zt ∈ R
R×R de-

fined in (25), which is involved in the update of our
factorization. The following expressions are going to
be useful when computing it, and the first of them ap-
pears as a sub-expression of (42). For convenience we
state the dimensions of these quantities below:

Ht
def
= XtW

T
t ∈ R

N×R (43)

Jt
def
= HT

t Xt ∈ R
R×D (44)

= WtX
T
t Xt (45)

Kt
def
= JtJ

T
t ∈ R

R×R(symmetric) (46)

Lt
def
= HT

t Ht ∈ R
R×R(symmetric) (47)

= WtX
T
t XtW

T
t (48)

= JtW
T
t (49)

After we have Ht, we can compute X̂t using a single
matrix multiply as:

X̂t = Xt −HtWt. (50)

We can expand Yt = RtTt, defined in (24), into quan-
tities that will be computed, as:

Yt =
η
N
RtX

T
t Xt + (1−η)(Dt + ρtI)Rt (51)

= η
N
E−0.5

t Jt + (1−η)(Dt + ρtI)E
−0.5
t Wt (52)

Using (52) we can expand Zt = YtY
T
t , as:

Zt =
η2

N2E
−0.5
t JtJ

T
t E

−0.5
t + (1−η)2 (Dt + ρtI)

2

+ η(1−η)
N

E−0.5
t JtW

T
t E

−0.5
t (Dt + ρtI)

+ η(1−η)
N

(Dt + ρtI)E
−0.5
t WtJ

T
t E

−0.5
t (53)

and we can substitute some of the sub-expressions we
defined above into this, to give:

Zt =
η2

N2E
−0.5
t KtE

−0.5
t + (1−η)2 (Dt + ρtI)

2

+ η(1−η)
N

E−0.5
t LtE

−0.5
t (Dt + ρtI)

+ η(1−η)
N

(Dt + ρtI)E
−0.5
t LtE

−0.5
t (54)

Our strategy will be to compute the symmetric quan-
tities Lt and Kt on the GPU, and transfer them to the
CPU where we can then compute Zt using the expres-
sion above – this can be done in O(R2) – and then do
the symmetric eigenvalue decomposition as in (26), on
the CPU. We repeat the equation here for convenience:

Zt = UtCtU
T
t . (55)

Here, Ut will be orthogonal, and mathematically, no
element of the diagonal matrix Ct can be less than
(1−η)2ρ2t , so we floor its diagonal to that value to pre-
vent problems later if, due to roundoff, any element is
smaller than that.

Below, we’ll say how we efficiently compute tr (XXT )

and tr (X̂X̂T ); for now, just assume those quantities
have been computed.

We compute ρt+1 as follows, expanding St in (29):

ρ′t+1 =
1

D−R

(

η

N
tr (XXT )+

(1−η)(Dρt+tr (Dt))− tr (C0.5
t )

)

. (56)

We can now compute Dt+1 and ρt+1; we floor both to
ǫ to ensure they never go to exactly zero which could
cause problems for our algorithm.

Dt+1 = max(C0.5
t − ρ′t+1I, ǫI) (57)

ρt+1 = max(ǫ, ρ′t+1) (58)

for a small constant ǫ = 10−10 (the first max is taken
per element). We can now compute the scalar βt+1

and the diagonal matrix Et+1 (we show the formula
for its diagonal elements):

βt+1 = ρt+1(1+α) +
α

D
tr (Dt+1) (59)

etii =
1

βt+1/dt+1,ii + 1
(60)

We never construct Rt+1 in memory, but instead we
directly compute Wt+1. We can factor it as follows:

Wt+1
def
= E0.5

t+1Rt+1 (61)

= E0.5
t+1C

−0.5
t UT

t Yt (62)

= E0.5
t+1C

−0.5
t UT

t

(

η
N
E−0.5

t Jt + (1−η)(Dt+ρtI)Rt

)

(63)

= AtBt (64)

where

At
def
= η

N
E0.5

t+1C
−0.5
t UT

t E
−0.5
t (65)

Bt
def
= Jt +

N(1−η)
η

(Dt + ρtI)Wt, (66)

and note that while it might seem like a factor of E−0.5
t

is missing from the second term in Bt, in fact we use
the fact that it commutes with (Dt + ρtI) to move it
to the left, into At. If we’re using a GPU, At will be
computed in time O(R2) on the CPU and transferred
to the GPU; we then compute Bt on the GPU effi-
ciently by scaling the rows of Wt and adding Jt; then
we multiply At and Bt on the GPU.
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B.3.1 Maintaining orthogonality

We have noticed that the invariance RtR
T
t = I can

sometimes be lost due to roundoff. A proper analysis
of roundoff in our algorithm is not something we have
time to do, but we will describe how we detect and
fix this problem in practice. For speed, we only do
the following operations if the diagonal matrix Ct, has
condition number greater than 106, or if any elements
were floored as mentioned just after (55). Note: all
the computations we describe in this paper were done
in single precision.

We compute the symmetric matrix

Ot
def
= RtR

T
t (67)

= E−0.5
t

(

WtW
T
t

)

E−0.5
t , (68)

where the part in parentheses is computed on the GPU
and transferred to the CPU. If no element of Ot differs
by more than 10−3 from the corresponding element of
the unit matrix, we consider that Rt is sufficiently or-
thogonal and we do nothing more. Otherwise, we do
a Cholesky decomposition Ot = CCT , compute the
reorthogonalizing factor M = E0.5

t C−1E−0.5
t on the

CPU and copy to the GPU, and do Wt+1 ←MWt+1

to reorthogonalize. Re-orthogonalization happens ex-
tremely rarely, and usually only if something bad has
already happened such as parameter divergence.

B.3.2 Initialization

In our implementation we don’t bother dumping the
“state’ of the computation to disk so each new process
reinitializes them for the first minibatch it processes.
We initialize them so as to most closely approximate
the covariance of the first minibatch of features. This
is done by taking

S0
def
= 1

N
XT

0 X0 (69)

and finding the top R eigenvalues and eigenvectors;
the rows of R0 contain the top eigenvectors. Let λi be
the corresponding eigenvalues, for 1 ≤ i ≤ R, and we
set

ρ0 = max

(

tr (S0)−
∑R

i=1 λi

D −R
, ǫ

)

(70)

for ǫ = 10−10, and for 1 ≤ i ≤ R, we let d0ii ←
max(ǫ, λi − ρ0).

B.3.3 Computing matrix traces

We mentioned above that we have a fast way of com-
puting the quantities tr (XXT ) and tr (X̂X̂T ). These
are needed to compute γt using (37), and to compute
ρ′t+1 using (56). We compute these as a side effect of

the fact that we need, for each row x̄ti of the output, its
squared norm x̄T

tix̄ti. This will be required to enforce
the “maximum parameter change” per minibatch, as
described in Section 3.4.2. Suppose we’ve already com-
puted X̂t using (50). We compute the inner products

for all rows 1 ≤ i ≤ N of X̂t as

pi = x̂T
tix̂

T
ti, (71)

using a single GPU kernel invocation. If we are updat-
ing the parameters of the Fisher-matrix factorization,
then we can most efficiently obtain our desired traces
as follows:

tr (X̂X̂T ) =
∑

ipi (72)

tr (XXT ) = tr (X̂X̂T )− tr (LtEt) + 2tr (Lt). (73)

The expression for tr (XXT ) was obtained by expand-

ing tr (X̂X̂T ) using (50), moving tr (XXT ) to the left,
and recognizing sub-expressions that we have already
computed. In case we are not updating the param-
eters of the Fisher-matrix factorization, we have no
other need for Lt so it will be more efficient to com-
pute tr (XXT ) directly; this can of course be done in
O(ND) operations and does not require a matrix mul-
tiply. Once we have the scaling factor γt we can scale
the pi quantities by its square, and they will equal
the quantities x̄T

tix̄ti that we’ll need for enforcing the
maximum parameter change.

B.3.4 Multithreading and other issues

Most of what we have written above is geared towards
operation using a GPU, but we also support operation
with CPUs, where our SGD implementation is multi-
threaded. In this case, we have to consider the inter-
action with multithreaded code because of the “state-
ful” nature of the computation. We wanted to avoid a
bottleneck where different threads wait to update the
parameters sequentially. Our solution is that before
doing the part of the computation where we update
the parameters, we try to get a lock, and if this fails,
we simply apply the fixed preconditioning matrix but
don’t update the Fisher-matrix parameters Rt and so
on. Since the model parameters don’t move very fast,
we don’t expect that this will make any noticeable dif-
ference to the SGD convergence, and we have seen no
evidence that it does.

B.4 Typical configuration

The most important user-specified parameters for our
algorithm are the rank R and the constant α that con-
trols smoothing with the unit matrix. The value α = 4
seems to work well over a wide variety of conditions,
so we normally leave it at that value. The rank R
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should generally increase with the dimension of the
vectors we are multiplying. Our experiments here are
with “p-norm” networks where the nonlinearity is di-
mension reducing, like maxout [15], typically reducing
the dimension from something like 3000 to 300. So a
typical parameter matrix will increase the dimension
from something like 301 to 3000 (it’s 301 instead of 300
because of the bias term). Our normal rule for ranks
is to use R = 20 on the input side of each matrix and
R = 80 on the output side. Part of the way we orig-
inally tuned this is to look at the diagonal matrices
Et. These matrices have diagonal values 0 < etii < 1,
sorted on i from greatest to least, and 1− etii can be
interpreted as the amount by which the input is scaled
in a certain direction in the space. A value of etii close
to 1 means we are strongly scaling down the input, and
a value close to 0 means we are leaving it unchanged.
If the last etii has a value of, say, 0.1, then reducing R
by one will be like taking a scaling factor of 0.9 applied
to a gradient, and setting to 1 instead; this seems un-
likely to make any difference to the SGD, as it’s like
changing the learning rate in some direction from 0.9
to 1. Our final etii values are normally in the range
0.05 to 0.2.

Another configurable constant is the “forgetting fac-
tor” 0 < η < 1: the closer η is to 1, the more rapidly
we track changes in the Fisher matrix due to changes
in parameters, but the more noise we will have in our
estimates. Because we don’t want to have to tune η
when we change the minibatch size, we set it as fol-
lows. The user specifies a parameter S (interpreted as
an approximate number of samples to include in our
estimate of the Fisher matrix), and we set

η = 1− exp(−N/S), (74)

where N is the minibatch size. We normally set S =
2000; we have no reason to believe that this is a very
important parameter.

In order to increase the speed of the algorithm, we nor-
mally configure it so that we only actually update the
parameters of the Fisher matrix every 4 minibatches,
except on the first 10 minibatches in a process, when
we always update them.

B.5 Summary of the online natural gradient
method

Here we summarize the online natural-gradient SGD
method– that is, we summarize the core part of the
algorithm that takes a matrixX ∈ R

N×D, and outputs
a matrix X̄ ∈ R

N×D. To understand how this fits into
the bigger picture of back-propagation and SGD, see
Section 4.

For this summary we will ignore issues of multithread-

ing. Our explanation here is just for one instance of
the algorithm, corresponding to the row or column di-
mension of one of the weight matrices; if there are I
weight matrices, there are 2I separate copies of the
variables we describe here.

Typical configuration variables are as follows: α = 4,
S = 2000 (this will determine η), rank R = 20 (or
80), ǫ = 10−10; and let’s define a variable J = 4 that
dictates the period with which we update the Fisher-
matrix factors. Minibatch size N is normally 128 or
512.

On t = 0, before running the steps below we have to
initialize the parameters as described in Section B.3.2.
Note: while in Section B.3.2 we describe how to set
ρ0, R0 and D0, the variables which we actually store
are ρ0, D0, and W0; to compute W0 we need Equa-
tions (34), (40) and (41).

We have an input X ∈ R
N×D, and despite the nota-

tion, we do not require that N be the same for all t–
sometimes the last minibatch we process has a smaller
than normal size.

If t < 10 or J divides t exactly, then we will be up-
dating the factored Fisher matrix; otherwise we just
apply it and don’t update. There are two slightly ver-
sions of the algorithm, depending whether we will be
updating the Fisher matrix.

In either case, we first compute η from N and S us-
ing (74), and then compute

Ht = XtW
T
t . (75)

From here the two cases begin to differ.

Without updating the Fisher matrix. If we
won’t be updating the Fisher matrix, then it’s sim-
pler. The input is Xt. We first compute tr (XT

t X).
Then we compute

X̂t = Xt −HtWt, (76)

overwriting the input Xt. Next, for each 1 ≤ i ≤ N we
compute the row-products pi using (71), and compute

tr (X̂T X̂) as the sum of pi. Now we can compute γt
using (37). Next we scale X̂t by γt to produce X̄t.
We also output for each i the quantity γ2

t pi = x̄T
tix̄ti,

which is needed to enforce the “maximum parameter
change per minibatch” constraint.

With updating the Fisher matrix. If we’re up-
dating the Fisher matrix, which we usually do every
four steps, there are some more operations to do. First
we compute

Jt = HT
t Xt ∈ R

R×D. (77)
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Next we want to compute Lt and Kt. We actually
have two separate strategies for this. If N > D (the
minibatch size exceeds the vector dimension), we do:

Lt = WtJ
T
t ∈ R

R×R (78)

Kt = JtJ
T
t ∈ R

R×R (79)

and in our implementation we combine these into one
matrix operation by placing L and K, and W and J,
next to each other in memory. Otherwise, we compute
Kt as above but Lt using:

Lt = HT
t Ht ∈ R

R×R. (80)

At this point, if we’re using a GPU, we transfer the
symmetric matrices Kt and Lt to the CPU. We now
compute some small derived quantities on the CPU:
βt using (34) and Et using (40), as well as E0.5

t and
E−0.5

t ; Et is diagonal so this is not hard. At this point
we compute the symmetric R×Rmatrix Zt using (54);
the expression looks scary but it can be computed in
O(R2) time.

We do the symmetric eigenvalue decomposition as
in (55), on the CPU, to get the orthogonal matrix Ut

and the diagonal matrix Ct, and we floor the diagonal
elements of Ct to (1−η)2ρ2t .

Next we compute

X̂t = Xt −HtWt, (81)

then compute the row-products pi using (71), compute

tr (X̂T
t X̂) =

∑

i pi, and compute tr (XT
t X) using (73).

We can now obtain the scaling factor γt using (37),

and use it to compute the main output X̄t = γtX̂t

and the per-row inner products of the output which
equal γ2

t pi (although in our implementation, to save
time we actually output γt and let the user do the
scaling later on).

We next compute ρ′t+1 using (56), Dt+1 using (57) and
ρt+1 using (58). Wt+1 is computed using a matrix
multiply on the GPU as in (64), after working out the
factors At and Bt.

At this point, if we had floored any diagonal elements
ofCt above or if its condition number after flooring ex-
ceeds 106, we do the orthogonality check and possible
reorthogonalization that we described in Section B.3.1
above.

C Other aspects of our DNN

implementation

Here we describe some aspects of our neural net train-
ing implementation that are of less direct relevance to
our parallel training and natural gradient methods, so
were not included in the main text of the paper.

In Section C.1 we explain how we enforce a maximum
parameter-change per minibatch; in C.2 we explain
our generalized model-averaging procedure; in C.3 we
explain how we use “mixture components” (a.k.a. sub-
classes) for DNNs; in C.4 we introduce our method of
input data normalization; in C.5 we give details on
how we initialize the DNN parameters; in C.6 we give
an overview of how we implemented sequence training
for DNNs; and in C.7 we discuss online (real-time)
decoding using iVectors for speaker adaptation.

C.1 Enforcing the maximum parameter
change per minibatch

As mentioned in Section 3.4.2, in order to prevent in-
stability and parameter divergence we enforce a max-
imum parameter-change per minibatch, which is ap-
plied for each layer of the network separately. Here we
explain how this is done. We don’t claim that this is
an exceptionally good method for preventing excessive
parameter changes, but we describe it here anyway for
the sake of completeness.

Suppose the update for a single weight matrix is for-
mulated as follows (and to keep things simple, we don’t
include an index for the layer of the network):

Wt+1 = Wt +∆t, (82)

where ∆t is the change that standard SGD would give
us, equal to the derivative of the objective function for
this minibatch multiplied by the learning rate ηt. To
enforce the maximum parameter chanbge, we scale the
change by a scalar αt:

Wt+1 = Wt + αt∆t, (83)

where we would like to choose αt ≤ 1 to ensure that
||αt∆t||F does not exceed a specified limit, || · ||F be-
ing the Frobenius norm. However, we don’t imple-
ment this scheme exactly as described above because
it would involve creating a temporary matrix to store
the product of matrices ∆t just in order to compute
its norm, and we don’t want to incur this penalty.

Instead we enforce it in a way that involves a sum over
elements of the minibatch. If ∆t = ηXTY, then ∆t

can be written as a sum over an index i that ranges
over the rows of X and Y. By properties of norms, the
2-norm of ∆t cannot exceed the sum of the 2-norms
of the terms in this sum: if the rows of X and Y are
written as xi and yi, then

||∆t||F ≤
∑

i

η||xi||2||yi||2 (84)

It does not take excessive time or memory to compute
the vector norms ||xi||2 and ||yi||2, so we compute the
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right hand side of 84 and use it as a stand-in for ||∆t||F ,
giving us

αt = min

(

1,
max-change-per-minibatch

∑

i η||xi||2||yi||2

)

(85)

where max-change-per-minibatch is a user-specified
maximum parameter-change per minibatch. Empiri-
cally we have found that it tends to be necessary to in-
crease max-change-per-minibatch when using a larger
minibatch size, so to simplify the configuration process
we define

max-change-per-minibatch = Nmax-change-per-sample
(86)

where N is the minibatch size. We always set
max-change-per-sample to 0.075 for experiments re-
ported here. To clarify how this method interacts with
the natural gradient methods described in Section 4:
the natural gradient is implemented as a modification
to the X and Y matrices, so we simply apply this
maximum-change logic on top of the modified X and
Y quantitities.

What we’ve found that this maximum-parameter-
change limit is active only early in training for layers
closer to the output.

C.2 Generalized model averaging

The convergence theory of Stochastic Gradient De-
scent [16] suggests that, for convex problems, if we
take not the last iteration’s model parameters but the
average over all iterations, it can improve the conver-
gence rate, particularly in ‘poorly-conditioned’ prob-
lems (i.e. where the condition number of the Hessian
is very large). This is not applicable in non-convex
problems such as ours, but it does suggest a related
method. As mentioned above, we define an outer iter-
ation as the length of time it takes for all jobs to pro-
cess K samples (e.g. K = 400 000), and on each outer
iteration each job dumps its final model to disk and
we average these to produce a single model. We store
the models (averaged over all jobs) for each outer iter-
ation. At the very end of training, instead of choosing
the model from the final outer iteration, we take the
models from the last P outer iterations (e.g. P = 20),
and search for a generalized weighted combination of
these models that optimizes the objective function on
a subset of training data– we tried using validation
data here, but for our task we found it worked best
to use training data. By generalized weighted combi-
nation, what we mean is that the parameters are a
weighted combination of the parameters of the input
models, but each layer can have different weighting
factors. Thus, if there are P models and L layers, the
number of parameters we learn on the data subdset is
LP . A few more details:

• The optimization method is L-BFGS.

• To improve the convergence speed of L-BFGS, we
optimize in a transformed (preconditioned) space
where the preconditioner is related to the Fisher
matrix.

• The starting point for the optimization is the best
of P + 1 choices, corresponding to each of the P
final iterations, and the average of all of them.

• We add a very tiny regularizer (like 10−10 times
the square of the vector of weights) to stop the
weights going to infinity in cases (like p-norm net-
works) where the objective function is invariant to
the parameter scale.

• We generally aim to optimize over the last P = 20
models (assuming they share the same parameter
structure, e.g. we haven’t added layers).

• In cases where P iterations would amount to
less than one epoch, we optimize over P models
where the individual models are simple averages
of model parameters for a duration of about 1/P
of the entire epoch.

We have generally found that this model combination
slightly improves results, but it is not a focus of the
current paper so we don’t provide experimental results
for this here.

C.3 Mixture components (sub-classes)

When using Gaussians for speech recognition, the
usual approach is to use a Gaussian mixture model
(GMM) rather than a single Gaussian, to model each
speech state. We have generalized this idea to neu-
ral networks, by allowing the posterior of each speech
state to be written as a sum over the posterior of
“sub-classes” that are analogous to the Gaussians in a
GMM. About halfway through training, we “mix up”
the model by increasing the dimension of the softmax
layer to a user-specified number that is greater than
the number of classes (usually about double the num-
ber of classes). After the softmax layer we introduce
a “sum-group” layer which sums its input over fixed
groups of indexes to produce a posterior for each class
that is a sum over the posteriors of the hidden “sub-
classes”. We also tried sharing the sub-classes across
classes in groups, but did not find this helpful.

Rather than distributing the “sub-classes” evenly, we
allocate more sub-classes to the more common classes.
We allocate them proportional to the 1/3 power of the
count of that class in the training data; this is based
on the rule we use to allocate Gaussians in our GMMs.
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When initializing the parameters of the “mixed-up” fi-
nal weight matrix, we make it correspond quite closely
with the original weight matrix. Each row of the new
weight matrix corresponds to a row of the old weight
matrix, plus a small noise term to allow the values
of the rows to diverge; and we modify the bias term
to normalize for the fact that some classes have more
sub-classes than others.

We have generally found that this slightly improves
results, but again, this is not a focus of the current
paper and we won’t be showing experimental results
about this.

C.4 Input data normalization

As mentioned in [17, Section 4.3], when training neural
networks it is helpful to normalize the input data so
that it is zero mean and so that more important dimen-
sions of input data have a larger variance. We wanted
a generic way to achieve this that would be invariant
to arbitrary affine transforms of the input. The tech-
nique we developed requires as statistics a within-class
covarianceW and a between-class covarianceB, accu-
mulated from the class-labeled data as if in preparation
for multi-class Linear Discriminant Analysis (LDA).
Assume in what follows that we have already normal-
ized the data so that it is zero-mean. For the technique
we are about to describe to make sense, the number
of classes should not be much smaller than the feature
dimension; fortunately, in our case it is much larger–
5000 > 300, to give typical numbers.

Suppose we were to do multi-class LDA but not ac-
tually reduce the dimension. We would transform
into a space where W was unit and B was diago-
nalized. Suppose the B in this space has diagonal
elements bi. Then the total covariance in each di-
mension i is bi + 1. This has the desirable property
that the data covariance is higher in “more impor-
tant” directions, but it doesn’t drop as fast as we’d
like for unimportant directions– it never goes below
1. In our method, we do the LDA-type transform as
mentioned above, then scale each row of the transform
by
√

(bi + 0.001)/(bi + 1). After this scaling, the total
covariance becomes bi + 0.001, where bi is the ratio of
between-class to within-class covariance. This seems
to work well.

After creating the transform matrix as described
above, we do a singular value decomposition on it,
floor the singular values (normally to 5), and recon-
struct again. The motivation here is to avoid a rarely
encountered pathology that occurs when the train-
ing data covariance was close to singular, which leads
to a transform with very large elements, that might
produce very large transformed data values on mis-

matched test data or due to roundoff. This step rarely
floors more than a handful of singular values so has
little effect on the transform.

C.5 Parameter initialization

We decided not to implement generative pre-training
as in [18], because while it is well established that it
improves results for small datasets, our understand-
ing is that as the amount of training data gets larger,
it eventually gives no improvement compared to a
suitable random initialization or discriminative layer-
wise backpropagation as in [19]. We could not find
a published reference for this; it is something we
have been told verbally. We refer here specifically to
speech recognition tasks; this does not apply to tasks
like computer vision where much larger networks are
used. In fact, the alternative “nnet1” implmentation
of DNNs in Kaldi does support pre-training, and for
small datasets (say, 50 hours or less), it generally gives
slightly better results than the “nnet2” implementa-
tion which we speak of here. For larger datasets, the
“nnet1” implementation eventually becomes impracti-
cal to run because it takes too long, and a detailed
comparison is way beyond the scope of this paper.

Instead of pre-training, we use what is described in [19]
as layer-wise back-propagation (BP). What this means
is, we initialize a network with one hidden layer, train
with BP for a short time (two “outer iterations” for
our experiments reported here), then remove the fi-
nal softmax layer and add a new, randomly initialized
hidden layer on top of the existing hidden layer; train
for a short time again; and repeat the process until
we have the desired number of hidden layers. Simi-
lar to [20], we use a standard deviation of 1√

i
for the

weights, where i is the fan-in to the weight matrix;
but we initialize the parameters of softmax layers to
zero. Note: we found it essential to discard the pa-
rameters of the final softmax layer when adding each
new hidden layer, as prescribed in [19].

For smaller datasets we can improve results versus
layer-wise BP by initializing all but the last layer of
the network from a network trained on another large
dataset, possibly from another language. When initial-
izing this way we typically find it best to use a larger
network than we otherwise would have used.

Because we noticed that sometimes on an outer iter-
ation immediately following the random initialization
of parameters (including the first outer iteration), the
parameter averaging can degrade rather than improve
the objective function, we modified our parallel train-
ing method so that on these iterations, instead of av-
eraging the parameters we choose the one that had the
best objective function computed on the subset of data
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that it was trained on (this choice of data avoids any
extra computation).

C.6 Sequence training

Sequence training [21] is a term that has the the same
meaning for DNNs that “discriminative training” [22]
has in the speech recognition community for GMMs.
It is a collective term for various objective functions
used for training DNNs for sequence tasks, that only
make sense at the whole-sequence level. This contrasts
with the cross-entropy objective function which, given
a fixed Viterbi alignment of the HMM states, eas-
ily decomposes over the frames of training data. In
GMM-based speech recognition, the term “discrimi-
native training” contrasts with Maximum Likelihood
estimation; in DNN-based speech recognition it con-
trasts with cross-entropy training. There are two pop-
ular classes of sequence/discriminative objective func-
tions:

• Maximum Mutual Information (MMI)-like objec-
tive functions [23, 22], more properly called condi-
tional maximum likelihood: these have the form of
sum over all utterances of the log-posterior of the
correct word sequence for each utterance, given
the model and the data. These include its pop-
ular ’boosted’ variant [24] which is inspired by
margin-based objective functions.

• Minimum Bayes Risk (MBR)-like objective func-
tions: popular variants include Minimum Phone
Error (MPE) [25, 22] and state-level Minimum
Bayes Risk [26, 27]. These have the form of an
expectation, given the data and the model, of an
edit-distance type of error. We can compute its
derivative w.r.t. the model parameters, because
the posteriors of the different sequences vary with
the model parameters.

This paper is mainly about our parallel approach to
standard cross-entropy training. However, we also ap-
ply the same ideas (model averaging, preconditioning)
to sequence training. We generally use state-level Min-
imum Bayes Risk (sMBR) [26, 27] although we have
also implemented Minimum Phone Error (MPE) [25]
and Boosted MMI [24]. The high-level details of our
lattice-based training procedure are similar to [28], but
note that in that paper we describe an alternative im-
plementation of deep neural nets (the “nnet1” setup)
that exists within Kaldi; this paper is about the al-
ternative “nnet2” setup. Some items in common with
the sequence training described in that paper include
the following:

• We use a low, fixed learning rate (e.g. 0.00002).

• We generally train for about 4 epochs.

Some differences include the following:

• We do parallel SGD on multiple machines, with
periodic model averaging.

• Rather than randomizing at the utterance level,
we split the lattice into as small pieces as pos-
sible given the lattice topology, and excise parts
of the lattice that would not contribute nonzero
derivatives; and we randomize the order of the
remaining pieces.

• To ensure that all layers of the network are trained
about the same amount, we modify the learning
rates in order to ensure that the relative change in
parameters on each “outer iteration” is the same
for each layer; their geometric average is con-
strained to equal the user-specified fixed learning
rate (e.g. 0.00002) which we mentioned above.

• In our recipe, we generate the lattices only once.

• The minibatches actually consist of several small
chunks of lattice (split as described above), from
many different utterances, spliced together.

Something that we should note in connection with the
learning rates is that for p-norm networks, since the
network output is invariant to (nonzero) scaling of the
parameters of the p-norm layers2, and since the gener-
alized weighted combination of Section C.2 may out-
put arbitrarily scaled weights, it is hard to specify in
advance a suitable learning rate. To solve this prob-
lem, we first scale the parameters of p-norm layers so
so that the expected square of a randomly chosen ma-
trix element is one.

For sequence training, because the frames in a mini-
batch are not drawn independently from the training
data but consist of sequential frames from one or a
few utterances, our “simple” preconditioning method
is not applicable, and we only apply the online method.

C.7 Online decoding and iVector inputs

In speech recognition applications it is sometimes
necessary to process data continuously as it arrives,
so that there will be no latency in response. This
makes it necessary that the algorithms used should not
have any dependencies that are “backwards” in time.
Backwards-in-time dependencies in our conventional
neural net recipes, e.g. as reported in [14], include cep-
stral mean normalization (CMN), in which we subtract

2This is thanks to the “renormalization layers” that fol-
low each p-norm layer [14]
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the mean of the input features; and fMLLR adapta-
tion, also known as constrained MLLR adaptation [29],
in which we use a baseline GMM system to compute a
likelihood-maximizing linear transform of the features.
Although we use “online” versions of both of these
things for online GMM-based decoding, it makes the
system very complex and is not ideal for combination
with DNNs.

In order to have a system that is easier to turn into
an online algorithm, we use iVectors [30] as an addi-
tional input to the neural network, in addition to the
spliced cepstral features. An iVector is a vector nor-
mally of dimension in the range of several hundred,
that represents speaker characteristics in a form suit-
able for speaker identification, and which is extracted
in a Maximum Likelihood way in conjunction with a
single mixture-of-Gaussians model (their means are re-
gressed on the iVector). The parameters of the factor
analysis model that extracts the iVectors are trained
without any supervision, just on a large number of
audio recordings. In our case we extract iVectors of
dimension 100. Once the iVector extractor is trained,
we switch to “online” extraction of iVectors for both
training and decoding, in which only frames preceding
the current frame are taken as inputs to the iVector
estimation process. At the beginning of the utterance,
the iVector will be zero due to the prior term.

The actual inputs to the DNN in this setup normally
consist of the iVector, plus ±7 frames of Mel frequency
cepstral coefficients (MFCCs) [31], without cepstral
mean normalization. Some other authors [32] use log
Mel filterbank energies; the MFCC features we use
here are equivalent to log Mel filterbank energies be-
cause MFCCs are a linear transform of them (we use
the same number of coefficients as filterbanks, 40 for
these experiments) and our input data normalization
(Section C.4) is invariant to such transforms; we only
use MFCCs because they are more easily compress-
ible and our “training example” data structure (Sec-
tion 3.3) compresses the input features.

In order to train models that are well matched both
to per-speaker decoding, where statistics from previ-
ous utterances of the same speaker are included in the
iVector estimation, and per-utterance decoding, where
we make a fresh start each time, we generally train
after splitting the speakers into “fake” speakers that
each have no more than two utterances.

In experiments on a number of datasets, we have
generally found that this method gives us about the
same performance as our previous recipe where we
trained a DNN on top of ±4 frames of the standard
40-dimensional features consisting of mean-normalized
MFCC features processed with LDA and MLLT, and

speaker adapted with fMLLR (a.k.a. constrained
MLLR [29]). We prefer it due to its convenience for ap-
plications and its convenience for cross-system transfer
learning.


