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ABSTRACT

This paper reports insights from translating Spanish conver-

sational telephone speech into English text by cascading an

automatic speech recognition (ASR) system with a statistical

machine translation (SMT) system. The key new insight is

that the informal register of conversational speech is a greater

challenge for ASR than for SMT: the BLEU score for translat-

ing the reference transcript is 63%, but drops to 31% for trans-

lating automatic transcripts, whose word error rate (WER) is

40%. Several strategies are examined to mitigate the impact

of ASR errors on the SMT output: (i) providing the ASR lat-

tice, instead of the 1-best output, as input to the SMT system,

(ii) training the SMT system on Spanish ASR output paired

with English text, instead of Spanish reference transcripts,

and (iii) improving the core ASR system. Each leads to con-

sistent and complementary improvements in the SMT output.

Compared to translating the 1-best output of an ASR system

with 40% WER using an SMT system trained on Spanish ref-

erence transcripts, translating the output lattice of an ASR

system with 35% WER using an SMT system trained on ASR

output improves BLEU from 31% to 37%.

Index Terms— Speech Recognition, Natural Language

Processing, Machine Translation, Human Language Technol-

ogy, Spoken Language Translation

1. INTRODUCTION

As component technologies for automatic speech recognition

(ASR) and statistical machine translation (SMT) indepen-

dently become more effective, capabilities such as automatic

spoken language translation (SLT) are starting to be feasi-

ble. The VERBMOBIL project [1] led to some of the early

work in SLT, investigating speech translation for thematically

constrained tasks such as travel planning and appointment

scheduling. The NESPOLE! project, inspired by its prede-

cessor C-STAR, focused on e-commerce applications of SLT.

The DARPA TRANSTAC program broadened the SLT task

to a wider range of tactical human-human communication,
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albeit with the constraint of real-time performance on hand-

held computing platforms. Examples of forays into “open

domain” SLT include the DARPA GALE program [2] and the

European Quaero project,1 whose numerous participants in-

vestigated translation of broadcast news and of slightly less

formal speech, which was labeled broadcast conversations.

A characteristic of the SLT tasks tackled over the last two

decades is the increasing spontaneity of the speech, and tech-

nology has evolved to cope with the concomitant increase

in difficulty. Many VERBMOBIL and NESPOLE! systems

used task-specific grammars for ASR and interlingua-based

approaches for translation, while all the GALE and Quaero

systems required large vocabulary continuous speech recog-

nition systems with generic language models for ASR, and

wide coverage SMT systems for translation.

Said differently, the speech in tasks like travel planning

and e-commerce is machine-directed and limited-domain.

Broadcast news is human-directed but very well enunciated.

Broadcast conversations are more spontaneous, but still in-

tended for a public audience by the speaker. Along the axis of

spontaneity, the next challenge is to develop SLT systems for

conversational human-human speech. This is one of the goals

of the DARPA BOLT program,2 and the focus of this paper.

We investigate the task of translating conversational tele-

phone speech from the Spanish FISHER corpus3 into English

text. We employ a cascade of an ASR and an SMT system,

and quantify the relative effectiveness of the ASR and SMT

components in dealing with the informal register of conver-

sational speech. We measure the impact of ASR errors on

SMT performance, and investigate several ways to mitigate

the impact by tighter coupling of the ASR and SMT sys-

tems. The key findings we present are that (i) the ASR com-

ponent bears the brunt of the difficulty in translating conver-

sational speech, not the SMT component, and as a result (ii)

ASR improvement and improved coupling of the ASR-SMT

components can significantly improve SLT for conversational

speech. Three simple mitigation strategies investigated in this

paper cumulatively improve the BLEU score from 30.7% to

36.6%. The TER reduces from 61.0% to 54.5%.

1http://www.quaero.org/
2http://www.darpa.mil/Our_Work/I2O/Programs/
3LDC Catalog No

¯
LDC2010S01 and LDC2010T04.



2. PRIOR WORK IN SPEECH TRANSLATION

A finite state transducer (FST) based approach to SLT is

proposed in [3], wherein FST-based ASR and SMT systems

are composed to form a source-language speech to target-

language text transducer. Given a spoken utterance in the

source language, Viterbi decoding is used to find the most

likely sentence in the target language. The approach is tested

on a limited-domain task with a small vocabulary. A Bayes

optimal tight coupling of ASR and SMT is described in [4],

and assumptions (monotone alignment) and approximations

(for summing over the hidden source-language transcript) are

proposed that lead to a solution similar to [3].

Several papers note that lexical reordering is what makes

full integration of ASR and SMT difficult in the FST frame-

work. So an ASR lattice with acoustic- and language-model

scores is passed in [5, 6] to an SMT system capable of lexical

reordering (cf. e.g., [7]). Confusion networks are used as an

alternative ASR-SMT interface by numerous researchers, in-

cluding [8, 9, 10, 11]. Tighter integration of ASR and SMT is

achieved in [12] by translating the n-best ASR outputs, con-

solidating the resulting translations, and rescoring them using

a log-linear model with additional features from the ASR out-

put that are not easily utilized by the SMT system. The dif-

ficulty of the speech ranges from limited-domain tasks (e.g.,

travel reservations) to broadcast news. Finally, research to

improve core ASR for SMT has also received considerable

attention [13, 14, 15]. A comprehensive survey of speech

translation research appears in the recent review article [16].

This paper contributes to this body of work by investi-

gating translation of conversational telephone speech (CTS).

A state-of-the-art ASR system for Spanish CTS is cascaded

with a hierarchical phrase-based Spanish-English SMT sys-

tem. The impact of the informal register of conversational

speech on the component systems is studied.

Some findings reported here are as expected, e.g., trans-

lating ASR lattices instead of the 1-best output improves the

SMT output. Others are more surprising, such as the fact that

certain ASR errors happen frequently enough that training the

SMT system on ASR output compensates for them.

Perhaps the most noteworthy insight is that the informal

register of CTS does not impact the SMT task as hard as it im-

pacts the ASR task — the SMT output is of respectable qual-

ity when the reference transcripts are translated (63% BLEU),

but degrades considerably (31%-37% BLEU) when ASR out-

put is translated. This suggests that improving core ASR qual-

ity is as critical to improving translation of CTS as tighter

ASR-SMT integration, if not more critical.

3. CORPUS AND EXPERIMENTAL SETUP

We use a Spanish-English parallel corpus recently created by

[17] by translating the reference transcripts of the Spanish

FISHER corpus (LDC2010T04) into English. The 819 con-

versations in the 160 hour (2M word) corpus have been parti-

tioned into a 1.8M word training set (ca 750 conversations),

and three held-out sets of 48K-50K words (20 conversations)

each, named dev, dev2 and test. One English translation is

available for each utterance in the training set, and four trans-

lation for each utterance in the held out sets.

The primary contributions of [17] are (i) describing the

corpus creation process and (ii) demonstrating the utility of

in-domain parallel text over out-of-domain training data (e.g.,

newswire and parliamentary discourse). The primary contri-

bution here is quantifying the impact of the informal register

of conversational speech on ASR and SMT, and its implica-

tion for ASR-SMT integration.

For the work reported here, we have used the training par-

tition of [17] to train the ASR and SMT systems, the dev par-

tition to tune ASR meta-parameters (e.g., LM order and scale)

and SMT model combination parameters via MERT [18], and

the dev2 partition to evaluate ASR and SMT performance.

The test partition is set aside for evaluating future work.

3.1. ASR System Development

We use the Kaldi speech recognition tools [19] to build our

Spanish ASR systems. The speech is represented by 13-dim

PLP coefficients, plus their first and second derivatives. A

standard GMM-HMM system is trained with triphone acous-

tic models, and used to initialize the training of another tri-

phone system with LDA+MLLT features. This is followed

by speaker adapted training (SAT) with fMLLR transforms.

This SAT system is comparable to the one used in [17], and

is our baseline. The dictionary is comprised of the Spanish

CALLHOME lexicon (LDC96L16), augmented automatically

using pronunciation rules provided with that lexicon to cover

all the words in the ASR training transcripts and the most fre-

quent words in the Spanish Gigaword corpus (LDC2011T12),

for a total of 64K words. The Spanish language model used

throughout this paper is a Kneser-Ney trigram estimated from

the FISHER Spanish training transcripts.

To study the impact of ASR improvements on SMT, we

bootstrap a speaker adapted subspace GMM system using the

SAT models. The SGMM system is further trained discrim-

inatively using the boosted MMI criterion, and results in the

best acoustic models are used in this work. We will refer to

them as the bMMI models. When processing test data, full

decoding and lattice generation is performed with the SAT

and SGMM systems, but the bMMI system is used only for

rescoring the SGMM lattices.

Finally, recall that the SMT system is trained on paral-

lel text whose Spanish side is the same as the reference tran-

scripts used for acoustic model training. To train an SMT

system on ASR output, we carry out 10-fold jack-knifing: we

divide the FISHER training set into 10 roughly equal parts,

and automatically transcribe each part using a complete ASR

system trained as described above on the remaining 9 parts.



The 1-best output, which thus contains realistic ASR errors,

comprises the Spanish side of the new parallel text.

3.2. SMT System Development

We use the Joshua toolkit4 [20] to build our Spanish-English

SMT system. Joshua uses hierarchical phrase-based trans-

lation models, and supports lattice input.5 The parallel text

comprises the Spanish transcripts in the training set of [17]

paired with their English translations. The English language

model is derived by interpolating two 5-gram language mod-

els, one estimated from the English side of the parallel text,

and another from the transcripts of the English FISHER cor-

pus (LDC2004T19 and LDC2005T19). We follow a standard

Joshua recipe for SMT system training,6 which entails word-

alignment followed by phrase table extraction from the par-

allel text, language model estimation from the English texts,

and MERT training on the dev set.

Now, the SMT phrase tables are conventionally extracted

from Spanish reference transcripts. But we also plan to use

them to translate ASR output. This is clearly a case of mis-

matched training and testing. Fully matched SMT training

would require a large parallel corpus of ASR outputs paired

with English translations, which may not always be available.

But it is reasonable to assume having a matched “tuning” set.

Therefore, as a first mitigating step, we tune the SMT sys-

tem on the type of data it must translate; i.e., for translating

1-best ASR output on dev2, we use a system whose the MERT

step [18] in Joshua is performed using the Spanish 1-best ASR

output on dev. Similarly, for translating Spanish lattices from

dev2, we perform MERT on dev using Spanish lattices.

We also conduct a contrastive experiment in which the

word alignment and phrase table extraction steps in the Joshua

training pipeline are performed using the Spanish 1-best out-

puts (instead of the reference transcripts) paired with the ref-

erence English translations. The intuition is that if the ASR

system makes some errors consistently, then the SMT system

could learn to overcome them.

3.3. ASR and SMT Evaluation Metrics

Standard metrics and scoring tools are used throughout this

paper. ASR output is measured against the reference tran-

scripts using the NIST sclite tool, albeit without the benefit of

a GLM file tailored for dev and dev2. SMT output is evaluated

4http://joshua-decoder.org/
5Kaldi word lattices are deterministic by design but permit epsilon arcs,

and store separate acoustic- and language-model scores on each arc. Joshua

requires epsilon-free lattices and treats arc weights like local probabilities.

Therefore, weight-pushing and epsilon-removal is carried out on the Kaldi

lattices using the Google OpenFST tools before passing them on to Joshua.
6Since the ASR output does not contain punctuation or capitalization, all

capitalization and sentence-internal punctuation is removed from the Spanish

side of the parallel text. However, punctuation is retained on the English side,

because SMT quality is evaluated against punctuated reference translations.

ASR System Dataset 1-best WER Lattice WER

SAT dev 41.2% 19.2%

SAT dev2 39.8% 18.6%

SGMM dev 38.1% 12.8%

SGMM dev2 37.0% 12.4%

bMMI dev 35.9% 13.5%

bMMI dev2 34.5% 12.9%

Table 1. WER improvements going from SAT to SGMM to

bMMI models. The 5.3% WER improvement on dev2 also

improves BLEU and TER, as seen by comparing Tables 3-5.

using BLEU-n4r4 and the NIST TER scripts, with lower-case,

punctuated reference English translations.

4. CONVERSATIONAL SPEECH TRANSLATION

4.1. ASR System Evaluation

We begin by evaluating the performance of the Spanish ASR

system on dev and dev2, as summarized in Table 1. Note

from the table that the WER on dev2 improves from 39.8%

to 34.5% as the acoustic models are improved, and one hopes

that this improvement will lead to improved SMT output.

Note also that even though the 1-best output has high WER,

the most accurate path in the lattice has a “Lattice WER” that

is a factor of 2-3 lower, and one hopes that the SMT sys-

tem will benefit from the presence of such alternatives when

translating lattices. Both hopes are fulfilled in subsequent

experiments (the former much more than the latter).

The ten most frequent substitution errors on the dev data

and their counts are shown in Table 2. One may argue whether

substitution errors such as sı́ ↔ si (which both translate to yes)

and qué ↔ que (which translate to what) are due to inconsis-

tent transcription conventions, but others represent genuine,

frequent confusions. If such substitutions were deliberately

introduced into the parallel text, one may hope that the word

alignment and phrase extraction steps may learn to overcome

some ASR errors by correctly translating the incorrect ASR

output. This hope too is fulfilled in subsequent experiments.

4.2. SMT System Evaluation

We begin by translating the Spanish reference transcripts

from dev2 using an SMT system trained and tuned on Span-

ish reference transcripts. We then translate the ASR 1-best

output from the SAT system using the same SMT system,

albeit tuned on 1-best output of the SAT system on dev. The

resulting SMT performance is reported in Table 3.

It is clear that Spanish CTS, per se, is not too difficult

to translate: the BLEU score is 62.7%. However, it drops

dramatically to 30.7% when translating the 1-best output of

the SAT system, whose WER is 39.8% (cf Table 1).



Count Correct Word ASR Output

54 sı́ si

53 si sı́

47 mm mhm

41 qué que

41 y sı́

36 [noise] [laughter]

32 las la

32 que qué

29 mhm mm

29 mja mhm

Table 2. The 10 most frequent substitution errors on dev sug-

gest that an SMT system could learn to translate incorrect

Spanish words to the correct English word.

4.2.1. Translating ASR Lattices Instead of 1-Best Outputs

Recall from Table 1 that the most accurate path in lattices gen-

erated by the SAT system has a much lower WER (18.6%).

Therefore, a natural step is to pass on the entire ASR lattice

as the SMT input. The result of this exercise, also shown in

Table 3, is a modest SMT improvement (30.9% BLEU).

Table 3 also shows that if an oracle were to select and

pass on the most accurate transcript available in the lattice,

then the improvement would be much more dramatic (39.3%

BLEU). This suggests further research on tighter ASR-SMT

integration and SMT-guided lattice rescoring.

4.2.2. SMT Training on 1-Best Outputs Instead of Reference

Inspired by the observations in Table 2, we carry out the 10-

fold decoding of the speech in the training set, and use the

Spanish 1-best output for word alignment and phrase extrac-

tion. The resulting SMT models are then tuned on dev, as

before, and used to translate the ASR output on dev2. The

resulting performance is shown in the lower block of Table 3.

Clearly, for both 1-best translation and lattice translation,

the SMT system trained on ASR output is better: BLEU im-

proves 30.7% to 32.6% (resp. 30.9% to 32.9%), and TER

reduces from 61.0% to 58.6% (resp. 60.3% to 57.3%).

Train on Tune on Translate BLEU TER

Transcript Transcript Transcript 62.7% 29.2%

Transcript Oracle Oracle 39.3% 50.3%

Transcript Lattice Lattice 30.9% 60.3%

Transcript 1-best 1-best 30.7% 61.0%

1-best 1-best 1-best 32.6% 58.6%

1-best Lattice Lattice 32.9% 57.3%

Table 3. SMT performance on dev2 as a function of different

training and tuning choices, when translating the ASR output

of the SAT system (39.8% WER).

Train on Tune on Translate BLEU TER

Transcript Transcript Transcript 62.7% 29.2%

Transcript Oracle Oracle 42.5% 47.3%

Transcript Lattice Lattice 33.2% 57.8%

Transcript 1-best 1-best 33.5% 57.7%

1-best 1-best 1-best 34.9% 56.0%

1-best Lattice Lattice 35.2% 55.0%

Table 4. SMT performance on dev2 as a function of different

training and tuning choices, when translating the ASR output

of the SGMM system (37.0% WER).

Train on Tune on Translate BLEU TER

Transcript Transcript Transcript 62.7% 29.2%

Transcript Oracle Oracle 42.5% 47.1%

Transcript Lattice Lattice 35.3% 56.3%

Transcript 1-best 1-best 33.7% 58.0%

1-best 1-best 1-best 36.0% 55.1%

1-best Lattice Lattice 36.6% 54.5%

Table 5. SMT performance on dev2 as a function of different

training and tuning choices, when translating the ASR output

of the bMMI system (34.5% WER).

4.2.3. Improving ASR to Improve SMT

All the results of Table 3 are based on using an ASR sys-

tem with SAT acoustic models. We next study how these re-

sults change as the ASR system is incrementally improved,

first by replacing the SAT models with SGMMs, and then

with bMMI-trained SGMMs. Past experience with the GALE

SLT tasks may lead one to suspect that small improvements

in ASR of the kind shown in Table 1 will not translate into

SMT improvements. The results of Tables 4 and 5 provide a

pleasantly surprising contrast to the results of Table 3.

As the WER is reduced from 39.8% to 37.0% to 34.5%,

BLEU for 1-best translation increases from 32.6% to 34.9%

to 36.0%, while BLEU for lattice translation goes up from

32.9% to 35.2% to 36.6%. TER reduces commensurately.

5. CONCLUDING REMARKS

The cumulative impact of the three error mitigating steps of

Section 4.2 is a BLEU improvement from 30.7% to 36.6%.

The BLEU score for translating the oracle-best path in

the ASR lattice, however, is 42.5%. This suggests that further

research is needed towards tighter ASR-SMT integration.

Finally, the large gap between the BLEU score for trans-

lating the oracle-best path in the ASR lattice (42.5%) versus

the reference transcript (62.7%) suggests that ASR perfor-

mance is the more dominant hurdle in the path towards high

quality translation of conversational telephone speech.
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