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ABSTRACT

Recently, maxout networks have brought significant improvements

to various speech recognition and computer vision tasks. In this pa-

per we introduce two new types of generalized maxout units, which

we call p-norm and soft-maxout. We investigate their performance

in Large Vocabulary Continuous Speech Recognition (LVCSR) tasks

in various languages with 10 hours and 60 hours of data, and find

that the p-norm generalization of maxout consistently performs well.

Because, in our training setup, we sometimes see instability dur-

ing training when training unbounded-output nonlinearities such as

these, we also present a method to control that instability. This is the

“normalization layer”, which is a nonlinearity that scales down all

dimensions of its input in order to stop the average squared output

from exceeding one. The performance of our proposed nonlinear-

ities are compared with maxout, rectified linear units (ReLU), tanh

units, and also with a discriminatively trained SGMM/HMM system,

and our p-norm units with p equal to 2 are found to perform best.

Index Terms— Maxout Networks, Acoustic Modeling, Deep

Learning, Speech Recognition

1. INTRODUCTION

Following the recent success of pre-trained deep neural networks

based on sigmoidal units [1, 2, 3] and the popularity of “deep learn-

ing”, a number of different nonlinearities (activation functions) have

been proposed for neural network training. A nonlinearity that has

recently become popular is the Rectified Linear Unit (ReLU) [4],

which is a simple activation function y = max(0, x). Significant

performance gain is reported in [4] and [5], where ReLU networks,

without pre-training, outperform the standard sigmoidal networks.

More recently, the maxout nonlinearity [6], which can be regarded

as a generalization of ReLU, was proposed. This is a function y =
maxi xi that takes the maximum over groups of inputs which are

arranged in groups of, say, 3. Maxout networks, combined with

“dropout” [7], have given state-of-the-art performance in various

computer vision tasks [6], and have also achieved improvements in

speech recognition tasks [8, 9].

In this this paper, we present two “dimension-reducing” non-

linearities that are inspired by maxout. One is a “soft-maxout”,
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formed by replacing the max function with the function y =
log(

∑

i exp(xi)). The other one is p-norm, which is the non-

linearity y = ||x||p = (
∑

i |xi|
p)1/p, where the vector x represents

a small group of inputs (say, 5). Note: if all the xi were known to be

positive, the original maxout would be equivalent to the p-norm with

p = ∞. It should also be noted that the p-norm pooling strategy

has been used for learning image features [10, 11, 12], and a recent

work [13] has proposed a learned-norm pooling strategy for deep

feedforward and recurrent neural networks.

In Section 2 we describe our baseline DNN training recipe. In

Section 3, we describe our proposed nonlinearities. In Section 4 we

describe our experimental setup; and in Sections 5 and 6 we give

experiments and conclusions.

2. OUR DNN RECIPE

In this section we explain key features of our baseline DNN training

recipe. This recipe is part of the Kaldi ASR toolkit [14]. In order to

avoid confusion we should explain that Kaldi currently contains two

parallel implementations for DNN training. Both of these recipes are

deep neural networks where the last (output) layer is a softmax layer

whose output dimension equals the number of context-dependent

states in the system (typically several thousand). The neural net is

trained to predict the posterior probability of each context-dependent

state. During decoding the output probabilities are divided by the

prior probability of each state to form a “pseudo-likelihood” that is

used in place of the state emission probabilities in the HMM.

2.1. First Kaldi DNN implementation

The first implementation 1 is as described in [15]. This imple-

mentation supports Restricted Boltzmann Machines (RBM) pre-

training [1, 2, 3], stochastic gradient descent training using NVidia

graphics processing units (GPUs), and discriminative training

such as boosted MMI [16] and state-level minimum Bayes risk

(sMBR) [17, 18].

2.2. Second Kaldi DNN implementation

The work done in this paper was done using the second implemen-

tation of DNNs in Kaldi 2. This recipe was originally written to sup-

port parallel training on multiple CPUs, although it has now been

extended to support parallel GPU-based training. All our work here

was performed on CPUs, in parallel. It does not support discrimina-

tive training.

1Location in code: src/{nnet,nnetbin}, in scripts:
local/run dnn.sh

2Location in code: src/{nnet-cpu,nnet-cpubin}/, soon to be moved to:
src/{nnet2,nnet2bin}/. Location in scripts: local/run nnet cpu.sh, soon to be
moved to: local/run nnet2.sh



2.2.1. Greedy layer-wise supervised training

This recipe does not support Restricted Boltzmann Machine pre-

training. Instead we do something similar to the greedy layer-wise

supervised training [19] or the “layer-wise backpropagation” of [3].

We initialize the network randomly with one hidden layer, train it

for a short time (typically less than an epoch, meaning less than one

fullpass through the data), then remove the layer of weights that go

to the softmax layer, add a new hidden layer and two sets of ran-

domly initialized weights, and train again. This is repeated until we

have the desired number of layers.

2.2.2. Use of multiple CPUs

Our parallelization of the neural network training has two levels:

we parallelize on a single machine, and also across machines (by

“machine” we mean a single physical server with shared memory

and multiple CPUs). In a typical setup we run on 16 machines, each

running 16 threads, so we have 256 CPUs running in total. The

training time for 80 hours of data is about 48 hours.

The parallelization method on a single machine is to have mul-

tiple threads simultaneously updating the parameters while simply

ignoring any synchronization issues. This is similar to the Hogwild!

approach [20]. Another approach that we considered was to use a

fairly large minibatch size and to use a multi-threaded implementa-

tion of BLAS. However, we tried this and found the speedup was

much less than linear in the number of CPUs used.

We will now explain the parallelization method we use across

machines. It does not matter, for this method, whether the individual

machines are using a single CPU or multiple CPUs. Our method is

to have multiple machines train independently using SGD, on differ-

ent random subsets of the data. After processing a specified amount

of data (typically 300000 samples per machine, which can take 10-

20 minutes when using CPUs), each machine writes its model to

disk and we average the model parameters. The averaged model

parameters become the starting point for the next iteration of train-

ing. Because we average model parameters, rather than gradients as

in the normal approaches [21], we only need to average the models

quite infrequently. We have found that the lack of convexity of the

neural network objective function is simply not an issue. However,

for this method to make fast progress we must use a higher learning

rate than we would use if we were training on a single machine, and

this can sometimes lead to parameter divergence or saturation of the

sigmoidal units. Our parallel model training method tends to give a

small degradation in WER when compared with training on a single

machine, but we do it anyway because it is much faster.

2.3. Methods to stabilize training

We use a number of methods to help keep the training stable and to

stop the neurons from becoming “over-saturated” when using sig-

moidal units. We can only summarize these here.

2.3.1. Preconditioning the SGD

Preconditioned SGD means SGD where, instead of using a fixed

learning rate, we use some arbitrary matrix-valued learning rate

where the matrix is symmetric positive definite. This matrix can

either be fixed or can vary in some random way, although to be able

to prove convergence it will generally be necessary to have upper

and lower bounds on its eigenvalues that decrease in a suitable way

during training. Also, this matrix should not depend on the current

sample or it may bias the direction taken by the learning algorithm.

There are reasons from information geometry to think that this ma-

trix should be a multiple of the inverse of a multiple of the Fisher

information matrix [22]. However, this is a very high-dimensional

matrix. Previous work has used a diagonal approximation [23];

our approach is a full-matrix approximation, but factored in a spe-

cial way. Essentially, for the weights of each layer, we have a

matrix-valued factor corresponding to the input dimension and one

corresponding to the output dimension, which scale the input val-

ues and the output derivatives respectively. For each sample we

train, and for each of these factors, we derive the matrix from the

inverse of the Fisher information matrix computed over the other

members of the minibatch, smoothed using a multiple of the identity

matrix. This can be implemented much more efficiently than one

might think. We multiply the resulting matrices by a constant for

each (minibatch and layer) that is computed to ensure that the total

parameter-change is roughly the same as what it would have been if

we were not using this method.

We find that this method improves convergence as well as im-

proving stability when learning rates are high.

2.3.2. Maximum change per minibatch

We enforce a maximum change in the parameters per minibatch. For

each layer, we scale the parameter-change to ensure that the sum

over the examples in the minibatch, of the 2-norm change in param-

eters due to that example, is no more than a constant (e.g. 20). We

formulate it in this slightly un-intuitive way in order to avoid having

to store a temporary matrix.

2.4. Miscellaneous methods

In the following, note that an “iteration” of training corresponds to

however long it takes for each of the (say) 16 machines to process

a pre-specified number of samples– typically 300000 or so. The

number of epochs is fixed in advance, typically to around 20, and

this together with the total amount of data and the number of ma-

chines we are using in parallel determines the number of iterations;

the resulting number of iterations can vary between about 50 and 500

depending on the amount of training data.

2.4.1. Learning rates

The initial and final learning rates in our training setup must be spec-

ified by hand, and during training we decrease them exponentially,

except for a few epochs at the end (typically 5) during which we

keep them constant. In [24] an exponentially decreasing schedule

was also found to work best, although it is not supported by theory.

We should note that whatever the specified global learning rate is,

we apply half that learning rate to the last and second-to-last layers

of weights. We experimented with various automatic ways to set the

learning rates but found it very hard to do so robustly.

2.4.2. Parameter Shrinking and “fixing”

These methods are only applicable when using sigmoid-type units.

After each iteration we do either “shrinking” or “fixing”, on an al-

ternating schedule. Shrinking means scaling the parameters of each

layer by a separate factor, with the factors being determined by non-

linear optimization over a subset of the training data (we found this

worked better than using validation data). We call it shrinking be-

cause we expect that the resulting scaling factors will generally be

less than one (although this is not always the case). “Fixing” is an

operation where we check whether neurons are “over-saturated”, and

scales down the parameters for that neuron if so. “Over-saturated” is

defined as the derivative at the nonlinearity, averaged over training-

data samples, being lower than a threshold.



2.4.3. Mixing-up

In a method inspired by Gaussian mixture models, about halfway

through training we increase the dimension of the final output layer

(the softmax layer) by letting each output class’s probability be a

sum over potentially multiple “mixture components”. The mixture

components are distributed using a power rule, proportional to the

class priors. During mixing up, we copy and then perturb the pa-

rameters that we had before mixing up, and then modify the bias

term so that the total posterior probability assigned to each class is

roughly the same as before. The average number of new mixtures

we assign per state is configuration-dependent, but generally about

two or three. The WER improvement from this is quite small, and

not always consistent.

2.4.4. Model combination

After the final iteration of training, we take the models from the last

n iterations and combine them via a weighted-average operation into

a single model. The weights are determined via nonlinear optimiza-

tion, optimizing the cross-entropy on a randomly selected subset of

the training data (again, we found this to perform better than using

the validation data). Each layer is weighted separately, so the num-

ber of parameters being optimized is equal to n times the number of

layers. This gives a consistent improvement in WER.

3. MAXOUT NETWORKS AND OUR GENERALIZATIONS

In a maxout network, the nonlinearity is dimension-reducing. Sup-

pose we have K maxout units (e.g. K = 500) with group size G
(e.g. G = 5), then in this example the maxout nonlinearity would re-

duce the dimension from 2500 to 500. For each group of 5 neurons,

the output would be the maximum of all the inputs:

y =
G

max
i=1

xi (1)

Our generalizations are soft-maxout:

y = log
G
∑

i=1

exp(xi) (2)

and the p-norm:

y = ||x||p =
(

∑

i

|xi|
p
)

1/p

. (3)

The value of p is configurable; our experiments favor p=2. Another

nonlinearity we experiment with here is the ReLU nonlinearity:

y = max(x, 0). (4)

All of these nonlinearities have unbounded output. This can lead

to instability in training. What we generally observe is that after

the objective function increases steadily for a number of epochs, it

suddenly becomes very negative. When looking into the output of

the parallel training runs on a particular iteration, we would observe

that often the bad performance was limited to one or several of the

runs. We tried a few methods to fix this, and the one we settled on

was the following.

3.1. Normalization layers

A normalization layer is nonlinearity that goes from some dimension

K to K. We apply it directly after the nonlinearities discussed above,

without a layer of weights in between. Let the input be xi, with
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Fig. 1. Tuning #layers for maxout and variants: Bengali LimitedLP

1 ≤ i ≤ K. Compute σ =
√

1/K
∑

i x
2

i which is the uncentered

standard deviation of the xi. The nonlinearity is:

yi =

{

xi, σ ≤ 1
xi/σ, σ > 1

(5)

That is, it scales down the whole set of activations if necessary to

prevent the standard deviation from exceeding 1. Although this is

intended to stabilize training, for consistency we apply it in both

training and test conditions. We use normalization layers for all

the unbounded-output nonlinearities (i.e. ReLU, and maxout and

its variants).

3.2. Previous related work

We should note that soft versions of ReLU have already been inves-

tigated [25, 5]. Besides the softplus function used in [25], a “leaky”

version of ReLU that allows for a small non-zero derivative when

the unit is inactive, was tried in [5]. Neither modification resulted in

a performance improvement.

4. EXPERIMENTAL SETUP

We test on a number of languages. In each language there are two

evaluation conditions: LimitedLP, with 10 hours of training data, and

FullLP, with 60 or 80 hours of training data. We measure based on

Word Error Rate (WER), and Actual Term Weighted Value (ATWV),

for which higher is better. Our baselines are our standard DNN sys-

tem with tanh activations, and a SGMM [26] system trained with

Boosted MMI (bMMI) [16]. Both are trained on top of features

adapted with Constrained MLLR/fMLLR [27].

Fig. 2. Effect of p and the group size for p-norm units.



In this paper, we experiment with Babel Assamese3, Bengali4,

Haitian Creole5 and Zulu6 databases, mainly on limitedLP (10 hours

of training speech) setup. We used the Bengali fullLP (60 hours

of training speech) setup for experiments with group size G for the

Maxout networks.

The LimitedLP systems had around 2000 context-dependent

states and the Bengali FullLP system had 4800. The base features

used were PLP plus pitch and probability of voicing features based

on SAcC [28], for all languages except Haitian Creole where we

also added FFV features [29].

Note: for evaluation purposes we used the performer provided

keywords releases for Assamese and Bengali. As these keyword

sets weren’t available at the time of writing this paper for Zulu and

Haitian Creole, we generated our own development set of keywords

for these two languages, using a criterion based on mutual informa-

tion.

5. EXPERIMENTS

Figure 1 shows a tuning experiment where we varied the number of

layers for a Bengali LimitedLP experiment. Here, we used a group

size G = 10 and a number of groups K = 290 in each case (this

was tuned to give about 3 million parameters in the 2-layer case).

The optimal number of hidden layers seems to be lower for 2-norm

(at 3 layers) than for the other nonlinearities (at around 5).

The left plot in Figure 2 shows further tuning experiments, with

the same experimental setup as Figure 1, with two hidden layers.

Here we vary the value of p in the p-norm, and find that p = 2
works best. The right plot in the figure shows the effect of varying

the group size G, using the same data, two layers, p=2, and keeping

the number of parameters fixed at 3 million. A group size G=10
seems to work best. Note that in [8], a group size of G = 2 worked

best, but in that case the number of parameters was being decreased

as the group size was increased.

We also tuned the initial and learning rates (experiments not

shown). For all maxout variants, we used 0.016 → 0.004; for ReLU

we used 0.004 → 0.001, and for tanh units we used 0.015 → 0.002
for LimitedLP and 0.01 → 0.001 for FullLP.

In Figures 3 and 4 we compare the various nonlinearity types

across a number of languages, for the LimitedLP setting (10 hours

of training data). All neural networks have 2 layers; unfortunately

this is probably not the optimal setting. We used a group size G=10.

We kept the number of parameters for all neural nets roughly fixed at

around 3 million. We also compare with the baseline SGMM+bMMI

system. A fairly consistent trend can be seen, with the 2-norm giving

the best performance.

In Figure 5 we repeated the comparison with the FullLP Ben-

gali data, this time using 4 layers and around 12 million parameters,

where the 2-norm performed best in WER.

6. CONCLUSIONS

In this paper, we proposed two new generalized versions of Max-

out nonlinearities, namely soft-Maxout and p-norm units. In experi-

ments on a number of languages, we find that the p-norm units with

p=2 perform consistently better than the activations which we used

as baselines (various versions of Maxout, and tanh and ReLU). The

p-norm units also seem to perform better with a smaller number of

parameters and layers than the other nonlinearities.

3Language collection release IARPA-babel102b-v0.4.
4Language collection release IARPA-babel103b-v0.3.
5Language collection release IARPA-babel201b-v0.2b.
6Language collection release IARPA-babel206b-v0.1d.

Fig. 3. Comparing nonlinearity types (%WER, LimitedLP)

Fig. 4. Comparing nonlinearity types (ATWV, LimitedLP)

Fig. 5. Comparing nonlinearity types (Bengali FullLP)
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