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ABSTRACT

The Subspace GMM acoustic model has both globally shared
parameters and parameters specific to acoustic states, and this
makes it possible to do various kinds of tying. In the past
we have investigated sharing the global parameters among
systems with distinct acoustic states; this can be useful ina
multilingual setting. In the current paper we investigate are-
lated idea: to have different global parameters for different
acoustic conditions (gender, in this case) while sharing the
acoustic-state-specific parameters. We experiment with mod-
eling gender dependency in this way, and show Word Error
Rate improvements on a range of tasks and comparable re-
sults to the Vocal Tract Length Normalization (VTLN)-like
technique Exponential Transform (ET).

Index Terms— Subspace Gaussian Mixture Models, gen-
der depedency modeling

1. INTRODUCTION

The Subspace Gaussian Mixture Model (SGMM) [1] is a way
of compactly representing a large collection of mixture-of-
Gaussian models. Let us write a conventional Gaussian mix-
ture model as:

p(x|j) =

Mj∑

m=1

wjmN (x; µjm,Σjm), (1)

wherej is the state and the parameters of the model arecji,
µjm and Σjm. The basic version of the SGMM, without
speaker adaptation or “sub-states”, is:

p(x|j) =

I∑

i=1

wjiN (x; µji,Σi) (2)

wji =
exp(wT

i vj)∑
i exp(wT

i vj)
(3)

µji = Mivj , (4)

where the vectorsvj (normally of dimension aroundS=40)
describe in some abstract space how the states differ from
each other;I is the number of Gaussians in the shared GMM
structure, and is normally several hundred. The parametersof

the system are the state-specific parametersvj , and the glob-
ally shared parameterswi, Mi andΣi (these are full covari-
ances). It is described in [1] how to extend this with sub-states
(replacingvj with mixturesvjm and sub-states weightscjm),
and how to add speaker-dependent mean offsets via “speaker
vector” parametersv(s) and “speaker projections”Ni.

We sometimes speak of a Universal Background Model
(UBM). This is a mixture of full-covariance Gaussians of size
I that is used to initialize the system and to prune the Gaussian
indices during training and decoding. The UBM Gaussians
correspond to the indicesi, and when we speak of changing
the number of UBM Gaussians, this involves changing the
number of parametersNi and so on.

As described in [2], it is possible to use the SGMM frame-
work to improve speech recognition performance by leverag-
ing out-of-language data. The basic idea is to share all the
global parameters between languages. Since, for smaller sys-
tems, the globally shared quantities dominate the parameter
count, this can lead to more robust parameter estimates.

In this paper, we explore a related idea, which is to have
different sets of shared parameters for different genders,while
leaving the state-specific parametersvjm gender-neutral. We
expect that this would be more useful when there is a rela-
tively large amount of training data, because in this case the
parameter count tends to be less dominated by the global pa-
rameters (so we would increase the parameter count less, rel-
atively, by introducing more Gaussians in the UBM). Experi-
mentally, we implemented this technique and test it on a range
of tasks; we found that for all the tasks that had a reasonably
large amount of training data, this technique gave an improve-
ment versus the standard SGMM. On one setup, as an addi-
tional baseline we compared our method with a VTLN-like
technique, the Exponential Transform [3] (used in conjunc-
tion with SGMMs), and we find that our method gives better
results.

This paper is organized as follows. Section 2 explains
how we implemented gender dependency through the Gaus-
sian pruning mechanism of the SGMM framework, Section 3
describes our experimental setup and results, and we conclude
in Section 4.



2. GENDER-DEPENDENT SYSTEMS VIA GAUSSIAN
PRUNING

Our experiments were done with the open-source Kaldi
speech recognition toolkit [4]. In the recipes distributed
with Kaldi, the Gaussian selection phase tends to be done just
once in a particular stage of system building, and the selected
Gaussian indices are stored on disk. We decided that the
simplest way to implement gender dependency in the SGMM
framework would be to make it part of the Gaussian selection
phase: that is, pre-allocate certain Gaussian indices (certain
values ofi) to male, and certain ones to female. Then, when
training or decoding a male utterance, we would limit the
Gaussian selection phase to only the “male” indices, and like-
wise for female. This has almost the same effect as doing it
in the most natural and obvious way, which would be to have
multiple sets of global parameters and adding a new index
corresponding to gender on thewi, Mi andΣi quantities (so
we would havewki and so on). The only difference when
doing it in the Gaussian selection phase is that the model may
now be attempting to model the state-specific probability
of being in a particular gender, which is not very optimal.
That is, ideally in Equation 3 we would like to normalize the
weights per gender, rather than globally, but in our simple im-
plementation based on the Gaussian selection mechanism, it
is normalized globally. However, we guess that most acoustic
states would have seen similarly balanced statistics, so the
male/female probabilities would usually be about the same
(typically 0.5) and this should have very little effect on the
decoded output. We have verified this experimentally.

We now describe how we adapt the UBM training process
to the gender-dependent setup. Suppose we want a total of
800 Gaussians in the UBM (including both male and female),
and the corpus is reasonably gender-balanced. We cluster
the Gaussians in a traditional HMM-GMM system down to
400, as described in [1]. Then we do four iterations of full-
covariance GMM re-estimation on the training data; this is
done separately for the male and female training data, so we
get two separate UBMs, one for male and one for female.
At this point we merge them into a single UBM with about
800 Gaussians (a few may have been lost due to low counts),
and we record which Gaussian indices correspond to male,
and which correspond to female, in the merged UBM. Com-
pared to other VTLN-like technique Exponential Transform
(ET) [3] which requires another model and another pass of
decoding, our technique is very efficient.

Our training and test data are both annotated with gender
information. During both training and test, we provide the
program that does the Gaussian selection with lists of allow-
able Gaussian indicesi for each training or test utterance, and
it writes out the top-scoring Gaussians in those allowable sets.

We were concerned that it might be considered “cheat-
ing” to use gender information during test time. To forestall
this objectsion, for the English, Spanish and French Global

Phone data (see the experimental section) we classified the
test utterances by gender, by comparing the likelihoods ob-
tained during Gaussian selection based on a male versus fe-
male assumption. We got 100% classification accuracy for all
languages, so we can be confident that this “cheating” does
not affect our results.

Since the use of gender-dependent UBMs can be con-
sidered a form of speaker adaptation, we felt that it should
be evaluated in conjunction with standard speaker adaptation
methods used in SGMMs. Therefore we did our gender-
dependent experiments in a system that had the speaker
vectorsv

(s), and we also tested with Constrained MLLR
(CMLLR) adaptation and compared the results with another
VTLN-like technique (ET in this case).

3. EXPERIMENTAL SETUP

All our experiments are performed with the Kaldi speech-
recognition toolkit, introduced in [4]. The scripts for the
Resource Management and Wall Street Journal experiments
which we report here, are included with the toolkit (see
egs/rm/s1 and egs/wsj/s1).

3.1. Wall Street Journal experiments

The Wall Street Journal database [5] consists of clean, read
speech recorded with a high quality microphone (we used the
Sennheiser version of the recordings). For results reported in
this paper we train on all the SI-284 data— about 80 hours.
Our test results are with the Nov’92 and Nov’93 evaluation
test sets, using the 20k open vocabulary with non-verbalized
pronunciations. This is the hardest test condition so the results
may seem higher than expected for WSJ. See [4] for compari-
son with other published results. We test with a highly-pruned
version of the trigram language model supplied with the WSJ
corpus (pruned from 6.7 million to 1.5 million entries), since
the decoders in Kaldi currently do not support very large lan-
guage models.

All results we report here are based on MFCC plus delta
plus acceleration features. We report results with standard
mixture-of-diagonal-Gaussian models, and with SGMMs.
We used a dictionary in which phones were marked with
stress information and beginning and end-of-word informa-
tion, and built decision trees corresponding to each “base
phone”, in which questions could be asked about the stress
and word-position information. The HMM-GMM system
had 3349 context-dependent states and 40 000 Gaussians,
and the SGMM systems had 4780 context-dependent states
(for SGMM systems, the optimum number of states tends to
be higher) and 35 000 sub-states (i.e. 35 000 vectorsvjm).
The gender-independent UBM had 600 Gaussians (I = 600)
and the phonetic subspace dimension (S) was 50; the speaker
subspace dimension, where applicable, was 39. For gender-
dependent models, we used 800 UBM Gaussians (400 per



Model System %WER
/adaptation Id Nov’92 Nov’93

HMM-GMM tri3a 10.7 13.8
+CMLLR tri3a 9.5 12.1

SGMM+spk-vecs sgmm3b 7.8 10.4
+CMLLR sgmm3b 7.7 10.0

SGMM+spk-vecs+GD sgmm3c 7.5 9.5
+CMLLR sgmm3c 7.6 9.2

ET+SGMM+spk-vecs sgmm3c 7.5 9.9
+CMLLR sgmm3c 7.4 9.8

Table 1. Results on Wall Street Journal: %WERs

gender). We use an acoustic weight of 1/16 for GMM-based
systems, 1/11 for speaker-independent SGMM-based sys-
tems, and 1/12 for speaker-adapted SGMM-based systems.

As seen in Table 1, gender dependency improves re-
sults by0.1% and0.8% absolute on the Nov’92 and Nov’93
test sets respectively, comparing the sgmm3b and sgmm3c
systems with CMLLR adaptation. We repeated the gender
dependent decoding with gender-specific normalization of
the weightswji (actually,wjmi when we consider the sub-
states). In two out of the four gender-dependent decoding
experiments in Table 1 the WER was 0.1% worse, in one it
was 0.1% better, and in one it was unchanged. This confirms
our intition that global verusus gender-specific normalization
does not make a big difference. To clarify: by gender-specific
normalization of the weights we mean ensuring that within
each sub-statej, m, the weightswjmi sum to one for the
indicesi corresponding to each gender. Furthermore, com-
pared to the results by using ET, we observed worse results on
the Nov’92 test set (0.2% absolute) and better results on the
Nov’93 test set (0.6% absolute). The combination of ET and
gender-dependent UBM degraded result compared to either
baseline (results not shown).

3.2. Resource Management experiments

The Resource Management (RM) dataset [6] is a medium-
vocabulary dataset recorded under clean conditions. There
are 3.9 hours of training data. The language model used in
testing is a word-pair grammar supplied with the corpus. We
report results averaged over six test sets, as described in [4];
in total, the testing data we used is about 1.3 hours long.

All results are reported on top of MFCC plus delta plus
acceleration features. The models are triphone models with
context-dependency and tree clustering. The GMM baseline
system had 1459 context-dependent states and 9000 Gaus-
sians, and the SGMM systems had 2039 context-dependent
states and 7500 sub-states. The gender-independent SGMM
systems had 400 UBM Gaussians; the gender-dependent ones
had 500 (300 for male and 200 for female). The phonetic sub-
space dimensionS was 40 and the speaker subspace dimen-
sion (if using speaker vectors) was 39. We used an acoustic
scale of 1/12 for GMM-based systems and 1/10 for SGMM-

Model System %WER
/adaptation Id (average)

HMM-GMM tri2a 4.0
+CMLLR tri2a 3.6

SGMM sgmma 3.3
+CMLLR sgmma 2.9

SGMM+spk-vecs sgmmb 2.5
+CMLLR sgmmb 2.4

SGMM+spk-vecs+GD sgmmc 2.7
+CMLLR sgmmc 2.5

ET+SGMM+spk-vecs sgmmc 2.3
+CMLLR sgmmc 2.3

Table 2. Results on Resource Management: %WERs

based systems.
In this case we did not see any improvement from gen-

der dependency; in fact, the WER increased by 0.1%-0.2%.
In fact, we did not expect to see improvements with so lit-
tle training data. The issue is that adding gender dependency
doubles the number of global parameters (assuming we keep
the same number of UBM Gaussians). Of course, after tuning
we have fewer UBM Gaussians per gender than we did for
the gender independent system, since with so little data we
cannot afford to train many UBM Gaussians per gender.

We reran the gender dependent decoding with gender-
dependent normalization of the substate-specific weights.
This did not affect results to within the rounding error, for
these experiments.

3.3. GlobalPhone experiments

GlobalPhone is a multilingual text and speech corpus that
covers speech data from 20 languages, including Arabic, Bul-
garian, Chinese (Mandarin and Shanghai), Croatian, Czech,
English, French, German, Japanese, Korean, Polish, Por-
tuguese, Russian, Spanish, Swedish, Tamil, Thai, Turkish,
and Vietnamese [7]. The corpus contains more than 400
hours of speech spoken by more than 1900 adult native
speakers. GlobalPhone is available from ELRA, the Euro-
pean Language Resources Association. The read articles
cover national and international political news as well as eco-
nomic news from 1995-2009. The speech data is available in
16bit, 16kHz mono quality, recorded with a close-speaking
microphone. Most transcriptions are internally validatedand
supplemented by special markers for spontaneous effects like
stuttering, false starts, and non-verbal effects. For thiswork
we selected English, French, and Spanish from the Global-
Phone corpus. Each language has about 20 hours of training
data, and we report results on the development sets which are
about 2 hours long.

To build the language models we used our Rapid Lan-
guage Adaptation Toolkit (RLAT) [8] to crawl for each lan-
guage several websites with link depth 20 in up to twenty days
e.g. as in [9]. Since Kaldi currently only supports decoding



with relatively small language model, we used the SRI lan-
guage model toolkit to prune all the language models using
an entropy criterion [10]. Table 3 gives a breakdown of the
trigram perplexities, OOV rate, and vocabulary size for the
three languages.

Languages PP OOV Vocabulary

English (EN) 340 0.5% 60k
French (FR) 423 2.4% 65k
Spanish (SP) 224 0.1% 19k

Table 3. Perplexities (PP), OOV rate and vocabulary size for
English, French and Spanish

For acoustic modeling, we used Kaldi to train HMM-
GMM and SGMM systems. These systems used MFCC plus
delta and acceleration features. The HMM-GMM-systems
had 9000 Gaussians and about 1220 context-dependent
acoustic states. The SGMM systems had 7500 sub-states,
and about 2100 context-dependent states. The gender-
independent SGMM systems had 400 UBM Gaussians (i.e.
I=400), and the gender-dependent systems had 500 UBM
Gaussians. For English and French there were 250 per gen-
der, but for Spanish, because of unbalanced data (9 female
and 7 male) we trained 290 Gaussians for female speakers
and 210 for male.

Systems English French Spanish

HMM-GMM 17.8 27.4 23.8
SGMM 13.3 23.1 18.6
SGMM+spk-vector 11.8 22.5 17.3
+CMLLR 11.4 22.1 16.5
SGMM+spk-vector+GD 11.0 22.6 16.8
+CMLLR 10.7 21.9 15.9

Table 4. WERs for English, French, German and Spanish
systems (GlobalPhone)

By adding gender dependency , we can see from Table 4
that WER from the final pass (after applying CMLLR) is im-
proved 0.7%, 0.2%, and 0.6% absolute for English, French,
and Spanish respectively.

4. CONCLUSIONS

We have described a simple way to model gender variation
within the SGMM framework. It consists of allocating cer-
tain Gaussians in the UBM to male, and certain ones to fe-
male, and enforcing this allocation during the Gaussian selec-
tion process. Experiments on five different training data sets
show that the technique almost always gives improvements
over gender-independent SGMM based systems, with a fairly
typical improvement being 0.4% absolute. Furthermore, we
got comparable results compared to the VTLN-like technique
Exponential Transform which was shown in [3] to perform
about the same as the conventional VTLN technique.

The Gaussian selection based implementation that we de-
scribe here is not very optimal as we do not properly normal-
ize the likelihoods for the genders (that is, the model is trying
to predict the the male versus female likelihoods, which is not
what we want). However, when we tried with normalizing the
likelihoods per gender in decoding time, we did not see any
improvement in WER.

We may in future investigate the application of this tech-
nique to other sources of variation, such as accent and acous-
tic condition, and its combination with multilingual systems.
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