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ABSTRACT 

This paper describes a speaking rate adaptation technique for auto-
matic speech recognition.  The technique aims to reduce speaking 
rate variations by applying temporal warping in front-end process-
ing so that the average phone duration in terms of feature frames 
remains constant.  Speaking rate estimates are given by timing 
information from unadapted decoding outputs.  We implement the 
proposed continuous frame rate normalization (CFRN) technique 
on a state-of-the-art speech recognition architecture, and evaluate 
it on the most recent GALE broadcast transcription tasks.  Results 
show that CFRN gives consistent improvement on all four separate 
systems and two different languages.  In fact, the reported numbers 
represent the best decoding error rates of the corresponding test 
sets.  It is further shown that the technique is effective without 
retraining, and adds little overhead to the multi-pass recognition 
pipeline found in state-of-the-art transcription systems.  

Index Terms – CFRN, speaking rate adaptation, speech recognition, 
frame rate normalization. 

1.  INTRODUCTION 

An essential problem in automatic speech recognition (ASR) is 
how to adapt to the myriad types of variability in human speech, 
from low-level acoustic disparities to speaker differences to 
higher-level linguistic diversities.  In fact, most current ASR sys-
tems rely on a collection of normalization and adaptation tech-
niques to tackle such variations, e.g., cepstral mean normalization 
(CMN), vocal tract length normalization (VTLN), and maximum 
likelihood linear regression (MLLR). 

One significant source of variation is the speaking rate, which 
measures how fast a speech segment is spoken.  The overall speak-
ing rate varies at both the speaker level and the utterance level.  It 
may also fluctuate within a sentence.  It has been shown that vari-
ance in speaking rate has a clear negative impact on speech recog-
nition performance [1]. 

The hidden Markov model (HMM) framework inherently takes 
care of the problem to some extent by allowing certain degree of 
freedom in the temporal axis.  However, in practice HMMs often 
model duration inadequately, especially when the speaking rate 
variance is large.  Efforts have been made to address the shortcom-
ing from the modeling perspective, ranging from explicit duration 

modeling in HMM to more drastic departures from the HMM para-
digm such as segment-based recognition [2]. 

This work aims to address speaking rate variation in the fea-
ture space.  In particular, we propose a normalization technique for 
speaking rate that can be used under the standard HMM framework, 
as an additional tool in conjunction with existing normalization 
and adaptation procedures in the recognition pipeline. 

The proposed technique normalizes different speaking rates 
by adjusting both the frame rate and frame size in the acoustic 
feature extraction stage.  Different from prior work in [3]-[7], in-
stead of using a small number of predetermined discrete rates, we 
allow the frame rate to vary continuously.  For speaking rate detec-
tion, the work bypasses the low-level signal processing approach 
[3]-[4], and relies on the ASR system itself for estimation and adap-
tation.  Furthermore, many proposed adaptation schemes require 
additional training, sometimes of multiple systems [5]-[7].  In con-
trast, the method presented here is shown to be effective even 
without matched training.  Finally, most results on this subject are 
reported on small tasks or limited systems.  In this paper, we im-
plement the proposed continuous frame rate normalization (CFRN) 
technique in a state-of-the-art ASR architecture, and evaluate it on 
the most recent GALE broadcast transcription tasks.  Results show 
that CFRN gives consistent improvement on four separate systems 
for two languages.  In fact, these results represent the best error 
rates reported on the corresponding test sets. 

The remainder of this paper is organized as follows.  In Sec-
tion 2, we discuss speaking rate adaptation and introduce CFRN.  
The system architecture is given in Section 3.  Section 4 presents 
the experimental results, followed by conclusions in Section 5. 

2. SPEAKING RATE ADAPTATION WITH CFRN 

2.1.  Speaking Rate and Frame Rate 

Most HMM-based ASR systems use a fixed frame rate and window 
size in front-end processing.  This is based on the assumption that 
the non-stationary speech signal can be approximated by a piece-
wise quasi-stationary process.  The common choice of 25 ms win-
dow and 10 ms step size is a compromise between data rate and 
resolution determined empirically to give a reasonable perform-
ance on average.   

Using a fixed frame rate is not optimal on two levels.   First, 
the fixed rate might be too slow to adequately capture the dynam-



ics in transient speech events while generating highly correlated 
redundant observations for stationary speech units [3].  This has 
motivated efforts to adjust frame rate based on the duration of low-
level speech units.  In [4], a very short step size of 2.5ms is used to 
process the speech signal and an entropy measure is used to extract 
the appropriate frames from the sequence.  In [8], signal process-
ing is done at a fixed frame rate, and frames are later dropped or 
inserted (inferred from existing frames) to normalize the duration 
of all phones, resulting in an observation sequence with effectively 
a varying frame rate.  In general, using variable frame rates to 
equalize low-level temporal dynamics often requires dramatic 
changes from the conventional value. 

Second, the overall speed of speaking is variable, and most of 
the time does not match the optimal operating point of a fixed-
frame-rate system.  Both the literature and our own experiments 
clearly indicate that the further the speaking rate drifts, the higher 
the error rate.  It is this overall shift in speaking rate that we aim to 
compensate for in this work.  In [5], utterances are grouped into 
fast and slow speech, and two different frame rates are chosen.  
Similarly, three discrete sets of frame rates and window sizes are 
used in [7].  Fig. 1 shows a typical distribution of speaking rate 

observed in broadcast speech (consisting of regular broadcast news 
and the more spontaneous broadcast conversations).  Here the 
speaking rate is defined as the average phone duration in an utter-
ance.  The graph confirms that the speaking rate does vary.  Fur-
ther, the speaking rate appears to vary continuously, thus making it 
difficult to justify any arbitrary thresholds for fast and slow 
speech.  Lastly, the dynamic range of the speaking rate is actually 
moderate.  This suggests that a modest adjustment might be 
enough to reduce the mismatch between speech rate and frame 
rate.  

2.2.  Speaking Rate Detection  

The reliable detection of speech rate is key to an adaptation 
scheme.  Note that our definition of speaking rate is slightly differ-
ent from the commonly used number of syllables per second (min-
ute) in Linguistics.  Our objective is to normalize the average 

speed of pronounced speech, hence, any inter-word silence and 
other non-speech segments, though important to the perceived 
rhythm and speed, must be discarded from the calculation. 

Our measure of the speaking rate is an average of phone dura-
tions in a speech segment.  It is therefore important to determine at 
which level the average should be taken, so that the subsequent 
adaptation is the most effective.  In the context of broadcast speech 
transcription, the possible levels include per show, per speaker, per 
utterance, or within utterance.  Both the speaker-level and the ut-
terance-level options are implemented.  It is found that per utter-
ance adaptation gives consistently higher gains in recognition per-
formance. 

Thus, given an utterance i , composed of a sequence of iN  
words: ],[ ,2,1, iNiii www K , the speaking rate )(if  is, 
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where )( , jiwt  is the duration of the word jiw ,  and )( , jiwn  is the 
number of phones in the word. 

Transcripts and actual word durations are needed to compute 
)(if .  For training, the timing information can be obtained by 

forced alignment using existing acoustic models.  For test utter-
ances, we propose to use the decoding hypotheses from the un-
adapted system to compute an estimate of the speaking rate, )(ˆ if .   

Given phone-level alignment, the definition given in (1) can 
be modified to compute average vowel duration or average sylla-
ble duration, both reasonable alternatives for measuring speaking 
rate.   There also exist ways to detect speaking speed directly from 
the speech using signal processing methods [2]-[4].   

One potential drawback of the ASR-based approach is that it 
requires an additional decoding pass.  However, this does not pose 
a significant problem for most modern ASR systems as using multi-
pass decoding to take advantage of adaptation techniques such as 
MLLR has become standard.  In a practical system with n decoding 
passes, decoding output from the n-1’th pass can usually be used 
for speaking rate estimation, with the final pass replaced by CFRN 
decoding.  Thus, the overall number of decoding passes remains 
unchanged. 

2.3.  Continuous Frame Rate Normalization  

As discussed above, the fixed frame rate in an ASR system is cho-
sen to give the best overall performance for different speaking 
rates, and is expected to perform well if a specific utterance’s 
measured speaking rate matches the average. 

Fig. 2(a) shows a scatter of per utterance cumulative phone 
duration vs. total number of phones, essentially the numerator and 
denominator terms in (1), over a large Arabic speech set.  Clearly, 
if the speaking rate )(if  were constant, the scatter would reduce to 
a straight line, and 1/slope is the universal speaking rate.  The ob-
jective of speaking rate adaptation is to normalize )(if  so that it 
remains constant for all utterances. 

Instead of directly normalizing the speaking rate by manipu-
lating the speech signal, we apply normalization to the frame rate 
so that the average phone duration in terms of feature frames re-
mains constant.  

We define the target speaking rate Φ  to be the global aver-
age phone duration:  

Fig. 1 Distribution of utterances over speaking rates (measured in 
average phone duration) on GALE eval’08 Arabic set.   
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where M is the number of utterances in the entire set.  The warp-
ing factor for utterance i , )(iwarp  is the ratio of the speaking rate 
estimate and the target speaking rate: 
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Lower and upper limits warpmin  and warpmax  are necessary to 
prevent improbable warping factors caused by unstable speaking 
rate estimates.  Finally, the frame rate is normalized by warping 
the step size and the window size in the front-end: 

 winwinstepstep TiwarpitTiwarpit ⋅=⋅= )()(  ,)()(  (4) 

where stepT  and winT are the original fixed step and window sizes, 
and  )(itstep  and )(itwin  are adapted values for utterance i . 

3.  SYSTEM ARCHITECTURE 

The proposed CFRN technique is implemented on a state-of-the-art 
multi-pass speech recognition architecture for broadcast transcrip-
tion.  Details of the architecture can be found in [10].  Here we 
only give a brief summary.  

The input audio is sampled at 16 KHz, and coded using 13-
dememsional PLP features; 25 ms windows and 10 ms shift are 
used before CFRN.  Nine consecutive frames are spliced and pro-
jected to 40 dimensions using LDA and MLLT.  The acoustic mod-
els are continuous mixture density HMMs with context-dependent 
states conditioned on cross-word quinphone context.  The acoustic 
models are refined through multiple training stages.  The final ML 
speaker adapted system contains VTLN, fMLLR, and MLLR adapta-
tions.  The discriminative system is built with both feature and 
model space training using either the MPE or MMI criterion.  A 
diagram of the baseline decoding pipeline is shown in Fig. 3. 

4.  EXPERIMENTS 

4.1.  Experimental Setup 

Experiments are carried out on four setups: a. Mandarin speaker 
independent (SI) system, b. Mandarin speaker adapted (SA) system, 
c. unvowelized Arabic system, and d. vowelized Arabic system. 
 
Mandarin systems 
Acoustic models are built on 1.7K hours of data released by LDC 
for the GALE program.  The SI system has 10K quinphone states 
modeled by 300K Gaussian densities.  The SA system has 15K 
states and 800K Gaussians.  The decoding LM is built by interpo-
lating 20 back-off 4-gram models using modified Kneser-Ney 
smoothing, and has a107K vocabulary. 

 
Arabic systems 
Acoustic models are built on 1.5K hours of transcribed GALE data 
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Fig. 3. Baseline decoding pipeline of the IBM broadcast speech 
transcription system. 
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Fig. 2 (a) Scatter plot of number of phones vs. cumulative phone 
duration per utterance over three GALE Arabic test sets.  (b) Dis-
tribution of the corresponding CFRN warp factors.  



from LDC and 85 hours of FBIS and TDT-4 audio.  The unvowelized 
system uses straightforward graphemic models, whereas the vow-
elized system uses phonetic models and requires inferring short 
vowels and diacritics missing in written Arabic.  The unvowelized 
system has 5K quinphone states modeled by 400K Gaussian densi-
ties.  The vowelized system has 6K states and 400K Gaussians.  
Both systems share an interpolated and smoothed 4-gram LM with 
a 774K-word vocabulary. 

4.2.  Experimental Results 

Table 1 shows the SI decoding results on the Mandarin dev’08 set 
defined by the GALE consortium.  Three approaches are compared: 
a. the baseline with fixed frame rate, b. variable frame rate with 

three discrete warping factors, and c. CFRN.  The results confirm 
that speaking rate adaptation through frame rate adjustment is 
indeed viable, and continuous warping is more effective, achieving 
0.6% absolute reduction in character error rate (CER). 

Two more sets are considered in the full SA decoding tests, 
shown in Table 2.  P-2.5 and eval’08 consist of the un-sequestered 
data from the GALE phase 2.5 and phase 3 evaluations, respec-

tively.  Speaking rates are estimated using the baseline output, and 
CFRN decoding is carried out subsequently.  The results suggest 
that the gain from CFRN is consistent. 

Table 3 summarizes results on the two Arabic systems.  Simi-
lar to the Mandarin case, dev’08 is a consortium-defined test set, 
while eval’07 and eval’08 contain un-sequestered portions of the 
corresponding GALE evaluation sets.  For baseline decoding, the 
unvowelized system is cross-adapted (with fMLLR/MLLR) on the 

SA decoding output of the vowelized system, and vice versa.   For 
CFRN decoding, the SA output from the vowelized system is used 
for speaking rate estimation in both cases.  The results show that 
CFRN is able to consistently give an additional gain on top of the 
best baselines.  Finally, a plot of WER as a function of speaking 
rate on eval’08 is given in Fig. 4.  Corresponding baseline and 

CFRN WERs are compared.  Two observations can be made from 
the plot.  First, off-central speaking rates indeed lead to higher 
WERs. Second, more consistent gain is made on fast speech. 

5.  CONCLUSIONS 

This work considers frame rate normalization for speaking rate 
adaptation in ASR.  Applied at test time without retraining, the 
proposed CFRN technique is shown to consistently reduce error 
rates over optimized baselines with minimal overhead.  In future 
work, we will investigate nonlinear frame rate warping and 
matched CFRN training. 
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Fig. 4.  Error distribution over speaking rate on eval’08 (Arabic). 
Higher error reduction is observed on fast speech. 
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Table 1.  SI decoding results on GALE mandarin dev’08.  

  fixed FR discrete FR cfrn  
CER  16.9% 16.6% 16.3% 

substitutions  13.1% 12.9% 12.6% 
deletions  2.6% 2.5% 2.5% 

insertions  1.2% 1.2% 1.2% 

Table 2.  SA decoding results on three GALE mandarin test sets. 

  dev’08 p-2.5 eval’08 
baseline  7.9% 7.5% 10.5% 

cfrn+  7.7% 7.4% 10.2% 

Table 3.  Decoding results on GALE Arabic test sets.  

  dev’08 eval’07 eval’08 
unvowelized  13.3% 14.7% 10.9% 

  cfrn+  13.2% 14.6% 10.7% 
vowelized  13.3% 14.7% 10.8% 

cfrn+  13.2% 14.4% 10.6% 


